Example #1
0
def run():
    with open('models.csv', 'r') as csvfile:
        reader = csv.reader(csvfile)
        header = next(reader)
        # print(header)
        for row in reader:
            args = dict(zip(header, row))
            model_name = args['model_name']
            # print(model_name)
            if os.path.exists('models/{}/config.json'.format(model_name)):
                args = load_config('models/{}/config.json'.format(model_name))
            else:
                create_config(args)
            preprocess(args)
            organize(args)
            print("-------- training --------")
            train(args)
Example #2
0
import csv
from config import create_config
from preprocess import preprocess, organize
from keras_train import train

with open('models.csv', 'rb') as csvfile:
    reader = csv.reader(csvfile)
    header = reader.next()
    #print header
    for row in reader:
        args = dict(zip(header, row))
        print args['model_name']
        create_config(args)
        preprocess(args)
        organize(args)
        train(args)
Example #3
0
    if len(sys.argv) > 1:
        arg = sys.argv[1]

        if arg == 'ensemble': # too lazy to make a flag
            current_ensemble()
            sys.exit(0)
        else:
            weights_path = sys.argv[1]
    else:
        weights_path = None

    # load all data sets
    X_train, y_train, X_val, y_val, X_test = load_data()

    # fit the model
    model, history = train(X_train, y_train, X_val, y_val, weights_path)

    # save results from training
    loss = np.array(history.history['loss'])
    acc = np.array(history.history['acc'])
    top_k = np.array(history.history['top_k_categorical_accuracy'])
    val_loss = np.array(history.history['val_loss'])
    val_acc = np.array(history.history['val_acc'])
    val_top_k = np.array(history.history['val_top_k_categorical_accuracy'])

    np.savetxt("loss.csv", loss, delimiter=",")
    np.savetxt("acc.csv", acc, delimiter=",")
    np.savetxt("top_k.csv", top_k, delimiter=",")
    np.savetxt("val_loss.csv", val_loss, delimiter=",")
    np.savetxt("val_acc.csv", val_acc, delimiter=",")
    np.savetxt("val_top_k.csv", val_top_k, delimiter=",")