def __init__(self, models, dataset, params, params_prediction, params_training, model_tokenize_f, model_detokenize_f, general_tokenize_f, general_detokenize_f, mapping=None, word2index_x=None, word2index_y=None, index2word_y=None, excluded_words=None, unk_id=1, eos_symbol='/', online=False, verbose=0): self.models = models self.dataset = dataset self.params = params self.params_prediction = params_prediction self.params_training = params_training self.model_tokenize_f = model_tokenize_f self.model_detokenize_f = model_detokenize_f self.general_tokenize_f = general_tokenize_f self.general_detokenize_f = general_detokenize_f self.mapping = mapping self.excluded_words = excluded_words self.verbose = verbose self.eos_symbol = eos_symbol self.word2index_x = word2index_x if word2index_x is not None else \ dataset.vocabulary[params_prediction['INPUTS_IDS_DATASET'][0]]['words2idx'] self.index2word_y = index2word_y if index2word_y is not None else \ dataset.vocabulary[params_prediction['OUTPUTS_IDS_DATASET'][0]]['idx2words'] self.word2index_y = word2index_y if word2index_y is not None else \ dataset.vocabulary[params_prediction['OUTPUTS_IDS_DATASET'][0]]['words2idx'] self.unk_id = unk_id self.interactive_beam_searcher = InteractiveBeamSearchSampler(self.models, self.dataset, self.params_prediction, excluded_words=self.excluded_words, verbose=self.verbose) # Compile Theano sampling function by generating a fake sample # TODO: Find a better way of doing this logger.info('Compiling sampler...') self.generate_sample('i') logger.info('Done.') self.online = online if self.online: self.online_trainer = OnlineTrainer(self.models, self.dataset, None, # Sampler None, # Params prediction params_training, verbose=self.verbose) for i, nmt_model in enumerate(self.models): logger.info('Compiling model %d...' % i) nmt_model.model._make_train_function() logger.info('Done.') else: self.online_trainer = None
def __init__(self, models, dataset, params, params_prediction, params_training, model_tokenize_f, model_detokenize_f, general_tokenize_f, general_detokenize_f, mapping=None, word2index_x=None, word2index_y=None, index2word_y=None, excluded_words=None, unk_id=1, eos_symbol='/', online=False, verbose=0): """ Builds an NMTSampler: An object containing models and dataset, for the interactive-predictive and adaptive framework. :param models: :param dataset: :param dict params: All hyperparameters of the model. :param dict params_prediction: Hyperparameters regarding prediction and search. :param dict params_training: Hyperparamters regarding incremental training. :param function model_tokenize_f: Function used for tokenizing the input sentence. E.g. BPE. :param function model_detokenize_f: Function used for detokenizing the output sentence. E.g. BPE revert. :param function general_tokenize_f: Function used for tokenizing the input sentence. E.g. Moses tokenizer. :param function general_detokenize_f: Function used for detokenizing the output sentence. E.g. Moses detokenizer. :param dict mapping: Source-target dictionary (for unk_replace heuristics 1 and 2). :param dict word2index_x: Mapping from word strings into indices for the source language. :param dict word2index_y: Mapping from word strings into indices for the target language. :param dict index2word_y: Mapping from indices into word strings for the target language. :param dict excluded_words: words that won't be generated in the middle of two isles. Currenly unused. :param int unk_id: Unknown word index. :param str eos_symbol: End-of-sentence symbol. :param bool online: Whether apply online learning after accepting each hypothesis. :param int verbose: Verbosity level. """ self.models = models self.dataset = dataset self.params = params self.params_prediction = params_prediction self.params_training = params_training self.model_tokenize_f = model_tokenize_f self.model_detokenize_f = model_detokenize_f self.general_tokenize_f = general_tokenize_f self.general_detokenize_f = general_detokenize_f self.mapping = mapping self.excluded_words = excluded_words self.verbose = verbose self.eos_symbol = eos_symbol self.word2index_x = word2index_x if word2index_x is not None else \ dataset.vocabulary[params_prediction['INPUTS_IDS_DATASET'][0]]['words2idx'] self.index2word_y = index2word_y if index2word_y is not None else \ dataset.vocabulary[params_prediction['OUTPUTS_IDS_DATASET'][0]]['idx2words'] self.word2index_y = word2index_y if word2index_y is not None else \ dataset.vocabulary[params_prediction['OUTPUTS_IDS_DATASET'][0]]['words2idx'] self.unk_id = unk_id self.interactive_beam_searcher = InteractiveBeamSearchSampler( self.models, self.dataset, self.params_prediction, excluded_words=self.excluded_words, verbose=self.verbose) # Compile sampling function by generating a fake sample. # TODO: Find a better way of doing this logger.info('Compiling sampler...') self.generate_sample('i') logger.info('Done.') self.online = online if self.online: self.online_trainer = OnlineTrainer( self.models, self.dataset, None, # Sampler None, # Params prediction params_training, verbose=self.verbose) for i, nmt_model in enumerate(self.models): logger.info('Compiling model %d...' % i) nmt_model.model._make_train_function() logger.info('Done.') else: self.online_trainer = None
class NMTSampler: def __init__(self, models, dataset, params, params_prediction, params_training, model_tokenize_f, model_detokenize_f, general_tokenize_f, general_detokenize_f, mapping=None, word2index_x=None, word2index_y=None, index2word_y=None, excluded_words=None, unk_id=1, eos_symbol='/', online=False, verbose=0): """ Builds an NMTSampler: An object containing models and dataset, for the interactive-predictive and adaptive framework. :param models: :param dataset: :param dict params: All hyperparameters of the model. :param dict params_prediction: Hyperparameters regarding prediction and search. :param dict params_training: Hyperparamters regarding incremental training. :param function model_tokenize_f: Function used for tokenizing the input sentence. E.g. BPE. :param function model_detokenize_f: Function used for detokenizing the output sentence. E.g. BPE revert. :param function general_tokenize_f: Function used for tokenizing the input sentence. E.g. Moses tokenizer. :param function general_detokenize_f: Function used for detokenizing the output sentence. E.g. Moses detokenizer. :param dict mapping: Source-target dictionary (for unk_replace heuristics 1 and 2). :param dict word2index_x: Mapping from word strings into indices for the source language. :param dict word2index_y: Mapping from word strings into indices for the target language. :param dict index2word_y: Mapping from indices into word strings for the target language. :param dict excluded_words: words that won't be generated in the middle of two isles. Currenly unused. :param int unk_id: Unknown word index. :param str eos_symbol: End-of-sentence symbol. :param bool online: Whether apply online learning after accepting each hypothesis. :param int verbose: Verbosity level. """ self.models = models self.dataset = dataset self.params = params self.params_prediction = params_prediction self.params_training = params_training self.model_tokenize_f = model_tokenize_f self.model_detokenize_f = model_detokenize_f self.general_tokenize_f = general_tokenize_f self.general_detokenize_f = general_detokenize_f self.mapping = mapping self.excluded_words = excluded_words self.verbose = verbose self.eos_symbol = eos_symbol self.word2index_x = word2index_x if word2index_x is not None else \ dataset.vocabulary[params_prediction['INPUTS_IDS_DATASET'][0]]['words2idx'] self.index2word_y = index2word_y if index2word_y is not None else \ dataset.vocabulary[params_prediction['OUTPUTS_IDS_DATASET'][0]]['idx2words'] self.word2index_y = word2index_y if word2index_y is not None else \ dataset.vocabulary[params_prediction['OUTPUTS_IDS_DATASET'][0]]['words2idx'] self.unk_id = unk_id self.interactive_beam_searcher = InteractiveBeamSearchSampler( self.models, self.dataset, self.params_prediction, excluded_words=self.excluded_words, verbose=self.verbose) # Compile sampling function by generating a fake sample. # TODO: Find a better way of doing this logger.info('Compiling sampler...') self.generate_sample('i') logger.info('Done.') self.online = online if self.online: self.online_trainer = OnlineTrainer( self.models, self.dataset, None, # Sampler None, # Params prediction params_training, verbose=self.verbose) for i, nmt_model in enumerate(self.models): logger.info('Compiling model %d...' % i) nmt_model.model._make_train_function() logger.info('Done.') else: self.online_trainer = None def generate_sample(self, source_sentence, validated_prefix=None, max_N=5, isle_indices=None, filtered_idx2word=None, unk_indices=None, unk_words=None): """ Generate sample via constrained search. Options labeled with <<isles>> are untested and likely require some modifications to correctly work. :param source_sentence: Source sentence. :param validated_prefix: Prefix to keep in the output. :param max_N: Maximum number of words to generate between validated segments. <<isles>> :param isle_indices: Indices of the validated segments. <<isles>> :param filtered_idx2word: List of candidate words to be the next one to generate (after generating fixed_words). :param unk_indices: Positions of the unknown words. :param unk_words: Unknown words. :return: """ logger.log(2, 'Beam size: %d' % (self.params_prediction['beam_size'])) generate_sample_start_time = time.time() if unk_indices is None: unk_indices = [] if unk_words is None: unk_words = [] tokenization_start_time = time.time() tokenized_input = self.general_tokenize_f(source_sentence, escape=False) tokenized_input = self.model_tokenize_f(tokenized_input) tokenization_end_time = time.time() logger.log( 2, 'tokenization time: %.6f' % (tokenization_end_time - tokenization_start_time)) parse_input_start_time = time.time() # Go from text to indices src_seq = self.dataset.loadText( [tokenized_input], vocabularies=self.dataset.vocabulary[ self.params['INPUTS_IDS_DATASET'][0]], max_len=self.params['MAX_INPUT_TEXT_LEN'], offset=0, fill=self.dataset.fill_text[self.params['INPUTS_IDS_DATASET'][0]], pad_on_batch=self.dataset.pad_on_batch[ self.params['INPUTS_IDS_DATASET'][0]], words_so_far=False, loading_X=True)[0][0] parse_input_end_time = time.time() logger.log( 2, 'parse_input time: %.6f' % (parse_input_end_time - parse_input_start_time)) fixed_words_user = OrderedDict() unk_words_dict = OrderedDict() # If the user provided some feedback... if validated_prefix is not None: next_correction = validated_prefix[-1] if next_correction == self.eos_symbol: return validated_prefix[:-1].decode('utf-8') # 2.2.4 Tokenize the prefix properly (possibly applying BPE) # TODO: Here we are tokenizing the target language with the source language tokenizer prefix_tokenization_start_time = time.time() tokenized_validated_prefix = self.general_tokenize_f( validated_prefix, escape=False) tokenized_validated_prefix = self.model_tokenize_f( tokenized_validated_prefix) prefix_tokenization_end_time = time.time() logger.log( 2, 'prefix_tokenization time: %.6f' % (prefix_tokenization_end_time - prefix_tokenization_start_time)) # 2.2.5 Validate words word_validation_start_time = time.time() for pos, word in enumerate(tokenized_validated_prefix.split()): fixed_words_user[pos] = self.word2index_y.get( word, self.unk_id) if self.word2index_y.get(word) is None: unk_words_dict[pos] = word word_validation_end_time = time.time() logger.log( 2, 'word_validation time: %.6f' % (word_validation_end_time - word_validation_start_time)) # 2.2.6 Constrain search for the last word constrain_search_start_time = time.time() last_user_word_pos = list(fixed_words_user.keys())[-1] if next_correction != u' ': last_user_word = tokenized_validated_prefix.split()[-1] filtered_idx2word = dict( (self.word2index_y[candidate_word], candidate_word) for candidate_word in self.word2index_y if candidate_word[:len(last_user_word)] == last_user_word) if filtered_idx2word != dict(): del fixed_words_user[last_user_word_pos] if last_user_word_pos in list(unk_words_dict.keys()): del unk_words_dict[last_user_word_pos] else: filtered_idx2word = dict() constrain_search_end_time = time.time() logger.log( 2, 'constrain_search_end_time time: %.6f' % (constrain_search_end_time - constrain_search_start_time)) sample_beam_search_start_time = time.time() trans_indices, costs, alphas = \ self.interactive_beam_searcher.sample_beam_search_interactive(src_seq, fixed_words=copy.copy(fixed_words_user), max_N=max_N, isles=isle_indices, valid_next_words=filtered_idx2word, idx2word=self.index2word_y) sample_beam_search_end_time = time.time() logger.log( 2, 'sample_beam_search time: %.6f' % (sample_beam_search_end_time - sample_beam_search_start_time)) if False and self.params_prediction['pos_unk']: alphas = [alphas] sources = [tokenized_input] heuristic = self.params_prediction['heuristic'] else: alphas = None heuristic = None sources = None # 1.2 Decode hypothesis decoding_predictions_start_time = time.time() hypothesis = decode_predictions_beam_search([trans_indices], self.index2word_y, alphas=alphas, x_text=sources, heuristic=heuristic, mapping=self.mapping, pad_sequences=True, verbose=0)[0] decoding_predictions_end_time = time.time() logger.log( 2, 'decoding_predictions time: %.6f' % (decoding_predictions_end_time - decoding_predictions_start_time)) # UNK words management unk_management_start_time = time.time() unk_indices = list(unk_words_dict) unk_words = list(unk_words_dict.values()) if len(unk_indices) > 0: # If we added some UNK word hypothesis = hypothesis.split() if len(hypothesis) < len( unk_indices ): # The full hypothesis will be made up UNK words: for i, index in enumerate(range(0, len(hypothesis))): hypothesis[index] = unk_words[unk_indices[i]] for ii in range(i + 1, len(unk_words)): hypothesis.append(unk_words[ii]) else: # We put each unknown word in the corresponding gap for i, index in enumerate(unk_indices): if index < len(hypothesis): hypothesis[index] = unk_words[i] else: hypothesis.append(unk_words[i]) hypothesis = u' '.join(hypothesis) unk_management_end_time = time.time() logger.log( 2, 'unk_management time: %.6f' % (unk_management_end_time - unk_management_start_time)) hypothesis_detokenization_start_time = time.time() hypothesis = self.model_detokenize_f(hypothesis) hypothesis = self.general_detokenize_f(hypothesis, unescape=False) hypothesis_detokenization_end_time = time.time() logger.log( 2, 'hypothesis_detokenization time: %.6f' % (hypothesis_detokenization_end_time - hypothesis_detokenization_start_time)) generate_sample_end_time = time.time() logger.log( 2, 'generate_sample time: %.6f' % (generate_sample_end_time - generate_sample_start_time)) return hypothesis def learn_from_sample(self, source_sentence, target_sentence): """ Incrementally adapt the model with the validated sample. :param source_sentence: Source sentence (x). :param target_sentence: Target sentence (y). :return: """ # Tokenize input tokenized_input = self.general_tokenize_f(source_sentence, escape=False) tokenized_input = self.model_tokenize_f(tokenized_input) src_seq = self.dataset.loadText( [tokenized_input], vocabularies=self.dataset.vocabulary[ self.params['INPUTS_IDS_DATASET'][0]], max_len=self.params['MAX_INPUT_TEXT_LEN'], offset=0, fill=self.dataset.fill_text[self.params['INPUTS_IDS_DATASET'][0]], pad_on_batch=self.dataset.pad_on_batch[ self.params['INPUTS_IDS_DATASET'][0]], words_so_far=False, loading_X=True)[0][0] # Tokenize output tokenized_reference = self.general_tokenize_f(target_sentence, escape=False) tokenized_reference = self.model_tokenize_f(tokenized_reference) # Build inputs/outpus of the system state_below = self.dataset.loadText( [tokenized_reference], vocabularies=self.dataset.vocabulary[ self.params['OUTPUTS_IDS_DATASET'][0]], max_len=self.params['MAX_OUTPUT_TEXT_LEN_TEST'], offset=1, fill=self.dataset.fill_text[self.params['INPUTS_IDS_DATASET'][-1]], pad_on_batch=self.dataset.pad_on_batch[ self.params['INPUTS_IDS_DATASET'][-1]], words_so_far=False, loading_X=True)[0] # 4.1.3 Ground truth sample -> Interactively translated sentence # TODO: Load dense-text if necessary trg_seq = self.dataset.loadTextOneHot( [tokenized_reference], vocabularies=self.dataset.vocabulary[ self.params['OUTPUTS_IDS_DATASET'][0]], vocabulary_len=self.dataset.vocabulary_len[ self.params['OUTPUTS_IDS_DATASET'][0]], max_len=self.params['MAX_OUTPUT_TEXT_LEN_TEST'], offset=0, fill=self.dataset.fill_text[self.params['OUTPUTS_IDS_DATASET'][0]], pad_on_batch=self.dataset.pad_on_batch[ self.params['OUTPUTS_IDS_DATASET'][0]], words_so_far=False, sample_weights=self.params['SAMPLE_WEIGHTS'], loading_X=False) # 4.2 Train online! if self.online_trainer is not None: self.online_trainer.train_online( [np.asarray([src_seq]), state_below], trg_seq, trg_words=[target_sentence]) else: logger.warning('Online learning is disabled.')
class NMTSampler: def __init__(self, models, dataset, params, params_prediction, params_training, model_tokenize_f, model_detokenize_f, general_tokenize_f, general_detokenize_f, mapping=None, word2index_x=None, word2index_y=None, index2word_y=None, excluded_words=None, unk_id=1, eos_symbol='/', online=False, verbose=0): self.models = models self.dataset = dataset self.params = params self.params_prediction = params_prediction self.params_training = params_training self.model_tokenize_f = model_tokenize_f self.model_detokenize_f = model_detokenize_f self.general_tokenize_f = general_tokenize_f self.general_detokenize_f = general_detokenize_f self.mapping = mapping self.excluded_words = excluded_words self.verbose = verbose self.eos_symbol = eos_symbol self.word2index_x = word2index_x if word2index_x is not None else \ dataset.vocabulary[params_prediction['INPUTS_IDS_DATASET'][0]]['words2idx'] self.index2word_y = index2word_y if index2word_y is not None else \ dataset.vocabulary[params_prediction['OUTPUTS_IDS_DATASET'][0]]['idx2words'] self.word2index_y = word2index_y if word2index_y is not None else \ dataset.vocabulary[params_prediction['OUTPUTS_IDS_DATASET'][0]]['words2idx'] self.unk_id = unk_id self.interactive_beam_searcher = InteractiveBeamSearchSampler(self.models, self.dataset, self.params_prediction, excluded_words=self.excluded_words, verbose=self.verbose) # Compile Theano sampling function by generating a fake sample # TODO: Find a better way of doing this logger.info('Compiling sampler...') self.generate_sample('i') logger.info('Done.') self.online = online if self.online: self.online_trainer = OnlineTrainer(self.models, self.dataset, None, # Sampler None, # Params prediction params_training, verbose=self.verbose) for i, nmt_model in enumerate(self.models): logger.info('Compiling model %d...' % i) nmt_model.model._make_train_function() logger.info('Done.') else: self.online_trainer = None def generate_sample(self, source_sentence, validated_prefix=None, max_N=5, isle_indices=None, filtered_idx2word=None, unk_indices=None, unk_words=None): print ("In params prediction beam_size: ", self.params_prediction['beam_size']) logger.log(2, 'Beam size: %d' % (self.params_prediction['beam_size'])) generate_sample_start_time = time.time() if unk_indices is None: unk_indices = [] if unk_words is None: unk_words = [] tokenization_start_time = time.time() tokenized_input = self.general_tokenize_f(source_sentence, escape=False) tokenized_input = self.model_tokenize_f(tokenized_input) tokenization_end_time = time.time() logger.log(2, 'tokenization time: %.6f' % (tokenization_end_time - tokenization_start_time)) parse_input_start_time = time.time() src_seq, src_words = parse_input(tokenized_input, self.dataset, self.word2index_x) parse_input_end_time = time.time() logger.log(2, 'parse_input time: %.6f' % (parse_input_end_time - parse_input_start_time)) fixed_words_user = OrderedDict() unk_words_dict = OrderedDict() # If the user provided some feedback... if validated_prefix is not None: next_correction = validated_prefix[-1] if next_correction == self.eos_symbol: return validated_prefix[:-1].decode('utf-8') # 2.2.4 Tokenize the prefix properly (possibly applying BPE) # TODO: Here we are tokenizing the target language with the source language tokenizer prefix_tokenization_start_time = time.time() tokenized_validated_prefix = self.general_tokenize_f(validated_prefix, escape=False) tokenized_validated_prefix = self.model_tokenize_f(tokenized_validated_prefix) prefix_tokenization_end_time = time.time() logger.log(2, 'prefix_tokenization time: %.6f' % (prefix_tokenization_end_time - prefix_tokenization_start_time)) # 2.2.5 Validate words word_validation_start_time = time.time() for pos, word in enumerate(tokenized_validated_prefix.split()): fixed_words_user[pos] = self.word2index_y.get(word, self.unk_id) if self.word2index_y.get(word) is None: unk_words_dict[pos] = word word_validation_end_time = time.time() logger.log(2, 'word_validation time: %.6f' % (word_validation_end_time - word_validation_start_time)) # 2.2.6 Constrain search for the last word constrain_search_start_time = time.time() last_user_word_pos = list(fixed_words_user.keys())[-1] if next_correction != u' ': last_user_word = tokenized_validated_prefix.split()[-1] filtered_idx2word = dict((self.word2index_y[candidate_word], candidate_word) for candidate_word in self.word2index_y if candidate_word[:len(last_user_word)] == last_user_word) # if candidate_word.decode('utf-8')[:len(last_user_word)] == last_user_word) if filtered_idx2word != dict(): del fixed_words_user[last_user_word_pos] if last_user_word_pos in list(unk_words_dict.keys()): del unk_words_dict[last_user_word_pos] else: filtered_idx2word = dict() constrain_search_end_time = time.time() logger.log(2, 'constrain_search_end_time time: %.6f' % (constrain_search_end_time - constrain_search_start_time)) sample_beam_search_start_time = time.time() trans_indices, costs, alphas = \ self.interactive_beam_searcher.sample_beam_search_interactive(src_seq, fixed_words=copy.copy(fixed_words_user), max_N=max_N, isles=isle_indices, valid_next_words=filtered_idx2word, idx2word=self.index2word_y) sample_beam_search_end_time = time.time() logger.log(2, 'sample_beam_search time: %.6f' % (sample_beam_search_end_time - sample_beam_search_start_time)) # # Substitute possible unknown words in isles # unk_in_isles = [] # for isle_idx, isle_sequence, isle_words in unks_in_isles: # if unk_id in isle_sequence: # unk_in_isles.append((subfinder(isle_sequence, list(trans_indices)), isle_words)) if False and self.params_prediction['pos_unk']: alphas = [alphas] sources = [tokenized_input] heuristic = self.params_prediction['heuristic'] else: alphas = None heuristic = None sources = None # 1.2 Decode hypothesis decoding_predictions_start_time = time.time() hypothesis = decode_predictions_beam_search([trans_indices], self.index2word_y, alphas=alphas, x_text=sources, heuristic=heuristic, mapping=self.mapping, pad_sequences=True, verbose=0)[0] decoding_predictions_end_time = time.time() logger.log(2, 'decoding_predictions time: %.6f' % (decoding_predictions_end_time - decoding_predictions_start_time)) # for (words_idx, starting_pos), words in unk_in_isles: # for pos_unk_word, pos_hypothesis in enumerate(range(starting_pos, starting_pos + len(words_idx))): # hypothesis[pos_hypothesis] = words[pos_unk_word] # UNK words management unk_management_start_time = time.time() unk_indices = list(unk_words_dict) unk_words = list(unk_words_dict.values()) if len(unk_indices) > 0: # If we added some UNK word hypothesis = hypothesis.split() if len(hypothesis) < len(unk_indices): # The full hypothesis will be made up UNK words: for i, index in enumerate(range(0, len(hypothesis))): hypothesis[index] = unk_words[unk_indices[i]] for ii in range(i + 1, len(unk_words)): hypothesis.append(unk_words[ii]) else: # We put each unknown word in the corresponding gap for i, index in enumerate(unk_indices): if index < len(hypothesis): hypothesis[index] = unk_words[i] else: hypothesis.append(unk_words[i]) hypothesis = u' '.join(hypothesis) unk_management_end_time = time.time() logger.log(2, 'unk_management time: %.6f' % (unk_management_end_time - unk_management_start_time)) hypothesis_detokenization_start_time = time.time() hypothesis = self.model_detokenize_f(hypothesis) hypothesis = self.general_detokenize_f(hypothesis, unescape=False) hypothesis_detokenization_end_time = time.time() logger.log(2, 'hypothesis_detokenization time: %.6f' % (hypothesis_detokenization_end_time - hypothesis_detokenization_start_time)) generate_sample_end_time = time.time() logger.log(2, 'generate_sample time: %.6f' % (generate_sample_end_time - generate_sample_start_time)) return hypothesis def learn_from_sample(self, source_sentence, target_sentence): # Tokenize input tokenized_input = self.general_tokenize_f(source_sentence, escape=False) tokenized_input = self.model_tokenize_f(tokenized_input) src_seq, src_words = parse_input(tokenized_input, self.dataset, self.word2index_x) # Tokenize output tokenized_reference = self.general_tokenize_f(target_sentence, escape=False) tokenized_reference = self.model_tokenize_f(tokenized_reference) # Build inputs/outpus of the system state_below = self.dataset.loadText([tokenized_reference.encode('utf-8')], vocabularies=self.dataset.vocabulary[self.params['OUTPUTS_IDS_DATASET'][0]], max_len=self.params['MAX_OUTPUT_TEXT_LEN_TEST'], offset=1, fill=self.dataset.fill_text[self.params['INPUTS_IDS_DATASET'][-1]], pad_on_batch=self.dataset.pad_on_batch[self.params['INPUTS_IDS_DATASET'][-1]], words_so_far=False, loading_X=True)[0] # 4.1.3 Ground truth sample -> Interactively translated sentence # TODO: Load dense_text if necessary trg_seq = self.dataset.loadTextOneHot([tokenized_reference.encode('utf-8')], vocabularies=self.dataset.vocabulary[self.params['OUTPUTS_IDS_DATASET'][0]], vocabulary_len=self.dataset.vocabulary_len[self.params['OUTPUTS_IDS_DATASET'][0]], max_len=self.params['MAX_OUTPUT_TEXT_LEN_TEST'], offset=0, fill=self.dataset.fill_text[self.params['OUTPUTS_IDS_DATASET'][0]], pad_on_batch=self.dataset.pad_on_batch[self.params['OUTPUTS_IDS_DATASET'][0]], words_so_far=False, sample_weights=self.params['SAMPLE_WEIGHTS'], loading_X=False) # 4.2 Train online! if self.online_trainer is not None: self.online_trainer.train_online([np.asarray([src_seq]), state_below], trg_seq, trg_words=[target_sentence]) else: logging.warning('Online learning is disabled.')
set_optimizer=False) for i in range(len(args.models)) ] models = [ updateModel(model, path, -1, full_path=True) for (model, path) in zip(model_instances, args.models) ] # Set additional inputs to models if using a custom loss function params['USE_CUSTOM_LOSS'] = True if 'PAS' in params['OPTIMIZER'] else False if params.get('N_BEST_OPTIMIZER', False): logging.info('Using N-best optimizer') models = build_online_models(models, params) online_trainer = OnlineTrainer(models, dataset, None, None, params_training, verbose=args.verbose) # Load text files fsrc = codecs.open(args.source, 'r', encoding='utf-8') # File with source sentences. source_lines = fsrc.read().split('\n') if source_lines[-1] == u'': source_lines = source_lines[:-1] n_sentences = len(source_lines) ftrans = codecs.open( args.dest, 'w', encoding='utf-8' ) # Destination file of the (post edited) translations. logger.info("<<< Storing corrected hypotheses into: %s >>>" % str(args.dest))
def main(): args = parse_args() server_address = ('', args.port) httpd = BaseHTTPServer.HTTPServer(server_address, NMTHandler) if args.config is None: logging.info("Reading parameters from config.py") from config import load_parameters params = load_parameters() else: logging.info("Loading parameters from %s" % str(args.config)) params = pkl2dict(args.config) try: for arg in args.changes: try: k, v = arg.split('=') except ValueError: print 'Overwritten arguments must have the form key=Value. \n Currently are: %s' % str( args.changes) exit(1) try: params[k] = ast.literal_eval(v) except ValueError: params[k] = v except ValueError: print 'Error processing arguments: (', k, ",", v, ")" exit(2) dataset = loadDataset(args.dataset) # For converting predictions into sentences # Dataset backwards compatibility bpe_separator = dataset.BPE_separator if hasattr( dataset, "BPE_separator") and dataset.BPE_separator is not None else '@@' # Build BPE tokenizer if necessary if 'bpe' in params['TOKENIZATION_METHOD'].lower(): logger.info('Building BPE') if not dataset.BPE_built: dataset.build_bpe( params.get('BPE_CODES_PATH', params['DATA_ROOT_PATH'] + '/training_codes.joint'), bpe_separator) # Build tokenization function tokenize_f = eval('dataset.' + params.get('TOKENIZATION_METHOD', 'tokenize_none')) detokenize_function = eval( 'dataset.' + params.get('DETOKENIZATION_METHOD', 'detokenize_none')) dataset.build_moses_tokenizer(language=params['SRC_LAN']) dataset.build_moses_detokenizer(language=params['TRG_LAN']) tokenize_general = dataset.tokenize_moses detokenize_general = dataset.detokenize_moses params_prediction = dict() params_prediction['max_batch_size'] = params.get('BATCH_SIZE', 20) params_prediction['n_parallel_loaders'] = params.get('PARALLEL_LOADERS', 1) params_prediction['beam_size'] = params.get('BEAM_SIZE', 6) params_prediction['maxlen'] = params.get('MAX_OUTPUT_TEXT_LEN_TEST', 100) params_prediction['optimized_search'] = params['OPTIMIZED_SEARCH'] params_prediction['model_inputs'] = params['INPUTS_IDS_MODEL'] params_prediction['model_outputs'] = params['OUTPUTS_IDS_MODEL'] params_prediction['dataset_inputs'] = params['INPUTS_IDS_DATASET'] params_prediction['dataset_outputs'] = params['OUTPUTS_IDS_DATASET'] params_prediction['search_pruning'] = params.get('SEARCH_PRUNING', False) params_prediction['normalize_probs'] = params.get('NORMALIZE_SAMPLING', False) params_prediction['alpha_factor'] = params.get('ALPHA_FACTOR', 1.0) params_prediction['coverage_penalty'] = params.get('COVERAGE_PENALTY', False) params_prediction['length_penalty'] = params.get('LENGTH_PENALTY', False) params_prediction['length_norm_factor'] = params.get( 'LENGTH_NORM_FACTOR', 0.0) params_prediction['coverage_norm_factor'] = params.get( 'COVERAGE_NORM_FACTOR', 0.0) params_prediction['pos_unk'] = params.get('POS_UNK', False) params_prediction['heuristic'] = params.get('HEURISTIC', 0) params_prediction['state_below_maxlen'] = -1 if params.get('PAD_ON_BATCH', True) \ else params.get('MAX_OUTPUT_TEXT_LEN', 50) params_prediction['output_max_length_depending_on_x'] = params.get( 'MAXLEN_GIVEN_X', True) params_prediction['output_max_length_depending_on_x_factor'] = params.get( 'MAXLEN_GIVEN_X_FACTOR', 3) params_prediction['output_min_length_depending_on_x'] = params.get( 'MINLEN_GIVEN_X', True) params_prediction['output_min_length_depending_on_x_factor'] = params.get( 'MINLEN_GIVEN_X_FACTOR', 2) # Manage pos_unk strategies if params['POS_UNK']: mapping = None if dataset.mapping == dict() else dataset.mapping else: mapping = None if args.online: logging.info('Loading models from %s' % str(args.models)) model_instances = [ TranslationModel(params, model_type=params['MODEL_TYPE'], verbose=params['VERBOSE'], model_name=params['MODEL_NAME'] + '_' + str(i), vocabularies=dataset.vocabulary, store_path=params['STORE_PATH'], set_optimizer=False) for i in range(len(args.models)) ] models = [ updateModel(model, path, -1, full_path=True) for (model, path) in zip(model_instances, args.models) ] # Set additional inputs to models if using a custom loss function params['USE_CUSTOM_LOSS'] = True if 'PAS' in params[ 'OPTIMIZER'] else False if params['N_BEST_OPTIMIZER']: logging.info('Using N-best optimizer') models = build_online_models(models, params) online_trainer = OnlineTrainer(models, dataset, None, None, params_training, verbose=args.verbose) else: models = [loadModel(m, -1, full_path=True) for m in args.models] params['INPUT_VOCABULARY_SIZE'] = dataset.vocabulary_len[ params['INPUTS_IDS_DATASET'][0]] params['OUTPUT_VOCABULARY_SIZE'] = dataset.vocabulary_len[ params['OUTPUTS_IDS_DATASET'][0]] # Get word2index and index2word dictionaries index2word_y = dataset.vocabulary[params['OUTPUTS_IDS_DATASET'] [0]]['idx2words'] word2index_y = dataset.vocabulary[params['OUTPUTS_IDS_DATASET'] [0]]['words2idx'] index2word_x = dataset.vocabulary[params['INPUTS_IDS_DATASET'] [0]]['idx2words'] word2index_x = dataset.vocabulary[params['INPUTS_IDS_DATASET'] [0]]['words2idx'] excluded_words = None interactive_beam_searcher = NMTSampler(models, dataset, params_prediction, tokenize_f, detokenize_function, tokenize_general, detokenize_general, mapping=mapping, word2index_x=word2index_x, word2index_y=word2index_y, index2word_y=index2word_y, excluded_words=excluded_words, verbose=args.verbose) # Compile Theano sampling function by generating a fake sample # TODO: Find a better way of doing this print "Compiling sampler..." interactive_beam_searcher.generate_sample('i') httpd.sampler = interactive_beam_searcher print 'Server starting at localhost:' + str(args.port) httpd.serve_forever()
def interactive_simulation(): args = parse_args() # Update parameters if args.config is not None: logger.info('Reading parameters from %s.' % args.config) params = update_parameters({}, pkl2dict(args.config)) else: logger.info('Reading parameters from config.py.') params = load_parameters() if args.online: from config_online import load_parameters as load_parameters_online online_parameters = load_parameters_online(params) params = update_parameters(params, online_parameters) try: for arg in args.changes: try: k, v = arg.split('=') except ValueError: print( 'Overwritten arguments must have the form key=Value. \n Currently are: %s' % str(args.changes)) exit(1) try: params[k] = ast.literal_eval(v) except ValueError: params[k] = v except ValueError: print('Error processing arguments: (', k, ",", v, ")") exit(2) check_params(params) if args.verbose: logging.info("params = " + str(params)) dataset = loadDataset(args.dataset) # dataset = update_dataset_from_file(dataset, args.source, params, splits=args.splits, remove_outputs=True) # Dataset backwards compatibility bpe_separator = dataset.BPE_separator if hasattr( dataset, "BPE_separator") and dataset.BPE_separator is not None else u'@@' # Set tokenization method params[ 'TOKENIZATION_METHOD'] = 'tokenize_bpe' if args.tokenize_bpe else params.get( 'TOKENIZATION_METHOD', 'tokenize_none') # Build BPE tokenizer if necessary if 'bpe' in params['TOKENIZATION_METHOD'].lower(): logger.info('Building BPE') if not dataset.BPE_built: dataset.build_bpe(params.get( 'BPE_CODES_PATH', params['DATA_ROOT_PATH'] + '/training_codes.joint'), separator=bpe_separator) # Build tokenization function tokenize_f = eval('dataset.' + params.get('TOKENIZATION_METHOD', 'tokenize_none')) if args.online: # Traning params params_training = { # Traning params 'n_epochs': params['MAX_EPOCH'], 'shuffle': False, 'loss': params.get('LOSS', 'categorical_crossentropy'), 'batch_size': params.get('BATCH_SIZE', 1), 'homogeneous_batches': False, 'optimizer': params.get('OPTIMIZER', 'SGD'), 'lr': params.get('LR', 0.1), 'lr_decay': params.get('LR_DECAY', None), 'lr_gamma': params.get('LR_GAMMA', 1.), 'epochs_for_save': -1, 'verbose': args.verbose, 'eval_on_sets': params['EVAL_ON_SETS_KERAS'], 'n_parallel_loaders': params['PARALLEL_LOADERS'], 'extra_callbacks': [], # callbacks, 'reload_epoch': 0, 'epoch_offset': 0, 'data_augmentation': params['DATA_AUGMENTATION'], 'patience': params.get('PATIENCE', 0), 'metric_check': params.get('STOP_METRIC', None), 'eval_on_epochs': params.get('EVAL_EACH_EPOCHS', True), 'each_n_epochs': params.get('EVAL_EACH', 1), 'start_eval_on_epoch': params.get('START_EVAL_ON_EPOCH', 0), 'additional_training_settings': { 'k': params.get('K', 1), 'tau': params.get('TAU', 1), 'lambda': params.get('LAMBDA', 0.5), 'c': params.get('C', 0.5), 'd': params.get('D', 0.5) } } else: params_training = dict() params['OUTPUT_VOCABULARY_SIZE'] = dataset.vocabulary_len[ params['OUTPUTS_IDS_DATASET'][0]] logger.info("<<< Using an ensemble of %d models >>>" % len(args.models)) if args.online: # Load trainable model(s) logging.info('Loading models from %s' % str(args.models)) model_instances = [ Captioning_Model(params, model_type=params['MODEL_TYPE'], verbose=params['VERBOSE'], model_name=params['MODEL_NAME'] + '_' + str(i), vocabularies=dataset.vocabulary, store_path=params['STORE_PATH'], clear_dirs=False, set_optimizer=False) for i in range(len(args.models)) ] models = [ updateModel(model, path, -1, full_path=True) for (model, path) in zip(model_instances, args.models) ] # Set additional inputs to models if using a custom loss function params['USE_CUSTOM_LOSS'] = True if 'PAS' in params[ 'OPTIMIZER'] else False if params['N_BEST_OPTIMIZER']: logging.info('Using N-best optimizer') models = build_online_models(models, params) online_trainer = OnlineTrainer(models, dataset, None, None, params_training, verbose=args.verbose) else: # Otherwise, load regular model(s) models = [loadModel(m, -1, full_path=True) for m in args.models] # Load text files logger.info("<<< Storing corrected hypotheses into: %s >>>" % str(args.dest)) ftrans = open(args.dest, 'w') ftrans.close() # Do we want to save the original sentences? if args.original_dest is not None: logger.info("<<< Storing original hypotheses into: %s >>>" % str(args.original_dest)) ftrans_ori = open(args.original_dest, 'w') ftrans_ori.close() if args.references is not None: ftrg = codecs.open(args.references, 'r', encoding='utf-8' ) # File with post-edited (or reference) sentences. all_references = ftrg.read().split('\n') if all_references[-1] == u'': all_references = all_references[:-1] # Get word2index and index2word dictionaries index2word_y = dataset.vocabulary[params['OUTPUTS_IDS_DATASET'] [0]]['idx2words'] word2index_y = dataset.vocabulary[params['OUTPUTS_IDS_DATASET'] [0]]['words2idx'] unk_id = dataset.extra_words['<unk>'] # Initialize counters total_errors = 0 total_words = 0 total_chars = 0 total_mouse_actions = 0 try: for s in args.splits: # Apply model predictions params_prediction = { 'max_batch_size': params['BATCH_SIZE'], 'n_parallel_loaders': params['PARALLEL_LOADERS'], 'predict_on_sets': [s], 'beam_size': params['BEAM_SIZE'], 'maxlen': params['MAX_OUTPUT_TEXT_LEN_TEST'], 'optimized_search': params['OPTIMIZED_SEARCH'], 'model_inputs': params['INPUTS_IDS_MODEL'], 'model_outputs': params['OUTPUTS_IDS_MODEL'], 'dataset_inputs': params['INPUTS_IDS_DATASET'], 'dataset_outputs': params['OUTPUTS_IDS_DATASET'], 'normalize_probs': params.get('NORMALIZE_SAMPLING', False), 'alpha_factor': params.get('ALPHA_FACTOR', 1.0), 'normalize': params.get('NORMALIZATION', False), 'normalization_type': params.get('NORMALIZATION_TYPE', None), 'data_augmentation': params.get('DATA_AUGMENTATION', False), 'mean_substraction': params.get('MEAN_SUBTRACTION', False), 'wo_da_patch_type': params.get('WO_DA_PATCH_TYPE', 'whole'), 'da_patch_type': params.get('DA_PATCH_TYPE', 'resize_and_rndcrop'), 'da_enhance_list': params.get('DA_ENHANCE_LIST', None), 'heuristic': params.get('HEURISTIC', None), 'search_pruning': params.get('SEARCH_PRUNING', False), 'state_below_index': -1, 'output_text_index': 0, 'apply_tokenization': params.get('APPLY_TOKENIZATION', False), 'tokenize_f': eval('dataset.' + params.get('TOKENIZATION_METHOD', 'tokenize_none')), 'apply_detokenization': params.get('APPLY_DETOKENIZATION', True), 'detokenize_f': eval('dataset.' + params.get('DETOKENIZATION_METHOD', 'detokenize_none')), 'coverage_penalty': params.get('COVERAGE_PENALTY', False), 'length_penalty': params.get('LENGTH_PENALTY', False), 'length_norm_factor': params.get('LENGTH_NORM_FACTOR', 0.0), 'coverage_norm_factor': params.get('COVERAGE_NORM_FACTOR', 0.0), 'pos_unk': False, 'state_below_maxlen': -1 if params.get('PAD_ON_BATCH', True) else params.get( 'MAX_OUTPUT_TEXT_LEN_TEST', 50), 'output_max_length_depending_on_x': params.get('MAXLEN_GIVEN_X', False), 'output_max_length_depending_on_x_factor': params.get('MAXLEN_GIVEN_X_FACTOR', 3), 'output_min_length_depending_on_x': params.get('MINLEN_GIVEN_X', False), 'output_min_length_depending_on_x_factor': params.get('MINLEN_GIVEN_X_FACTOR', 2), 'attend_on_output': params.get('ATTEND_ON_OUTPUT', 'transformer' in params['MODEL_TYPE'].lower()), 'n_best_optimizer': params.get('N_BEST_OPTIMIZER', False) } # Build interactive sampler interactive_beam_searcher = InteractiveBeamSearchSampler( models, dataset, params_prediction, excluded_words=None, verbose=args.verbose) start_time = time.time() if args.verbose: logging.info("Params prediction = " + str(params_prediction)) if args.online: logging.info("Params training = " + str(params_training)) n_samples = getattr(dataset, 'len_' + s) if args.references is None: all_references = dataset.extra_variables[s][ params['OUTPUTS_IDS_DATASET'][0]] # Start to translate the source file interactively for n_sample in range(n_samples): errors_sentence = 0 mouse_actions_sentence = 0 hypothesis_number = 0 # Load data from dataset current_input = dataset.getX_FromIndices( s, [n_sample], normalization_type=params_prediction.get( 'normalization_type'), normalization=params_prediction.get('normalize', False), dataAugmentation=params_prediction.get( 'data_augmentation', False), wo_da_patch_type=params_prediction.get( 'wo_da_patch_type', 'whole'), da_patch_type=params_prediction.get( 'da_patch_type', 'resize_and_rndcrop'), da_enhance_list=params_prediction.get( 'da_enhance_list', None))[0][0] # Load references references = all_references[n_sample] tokenized_references = list(map( tokenize_f, references)) if args.tokenize_references else references # Get reference as desired by the user, i.e. detokenized if necessary reference = list(map(params_prediction['detokenize_f'], tokenized_references)) if \ args.detokenize_bpe else tokenized_references # Detokenize line for nicer logging :) logger.debug(u'\n\nProcessing sample %d' % (n_sample + 1)) logger.debug(u'Target: %s' % reference) # 1. Get a first hypothesis trans_indices, costs, alphas = interactive_beam_searcher.sample_beam_search_interactive( current_input) # 1.2 Decode hypothesis hypothesis = decode_predictions_beam_search([trans_indices], index2word_y, pad_sequences=True, verbose=0)[0] # 1.3 Store result (optional) hypothesis = params_prediction['detokenize_f'](hypothesis) \ if params_prediction.get('apply_detokenization', False) else hypothesis if args.original_dest is not None: if params['SAMPLING_SAVE_MODE'] == 'list': list2file(args.original_dest, [hypothesis], permission='a') else: raise Exception( 'Only "list" is allowed in "SAMPLING_SAVE_MODE"') logger.debug(u'Hypo_%d: %s' % (hypothesis_number, hypothesis)) # 2.0 Interactive translation if hypothesis in tokenized_references: # 2.1 If the sentence is correct, we validate it pass else: # 2.2 Wrong hypothesis -> Interactively translate the sentence correct_hypothesis = False last_correct_pos = 0 while not correct_hypothesis: # 2.2.1 Empty data structures for the next sentence fixed_words_user = OrderedDict() unk_words_dict = OrderedDict() isle_indices = [] unks_in_isles = [] if args.prefix: # 2.2.2 Compute longest common character prefix (LCCP) reference_idx, next_correction_pos, validated_prefix = common_prefixes( hypothesis, tokenized_references) else: # 2.2.2 Compute common character segments #TODO next_correction_pos, validated_prefix, validated_segments = common_segments( hypothesis, reference) reference = tokenized_references[reference_idx] if next_correction_pos == len(reference): correct_hypothesis = True break # 2.2.3 Get next correction by checking against the reference next_correction = reference[next_correction_pos] # 2.2.4 Tokenize the prefix properly (possibly applying BPE) tokenized_validated_prefix = tokenize_f( validated_prefix + next_correction) # 2.2.5 Validate words for pos, word in enumerate( tokenized_validated_prefix.split()): fixed_words_user[pos] = word2index_y.get( word, unk_id) if word2index_y.get(word) is None: unk_words_dict[pos] = word # 2.2.6 Constrain search for the last word last_user_word_pos = list(fixed_words_user.keys())[-1] if next_correction != u' ': last_user_word = tokenized_validated_prefix.split( )[-1] filtered_idx2word = dict( (word2index_y[candidate_word], candidate_word) for candidate_word in word2index_y if candidate_word[:len(last_user_word)] == last_user_word) if filtered_idx2word != dict(): del fixed_words_user[last_user_word_pos] if last_user_word_pos in unk_words_dict.keys(): del unk_words_dict[last_user_word_pos] else: filtered_idx2word = dict() logger.debug(u'"%s" to character %d.' % (next_correction, next_correction_pos)) # 2.2.7 Generate a hypothesis compatible with the feedback provided by the user hypothesis = generate_constrained_hypothesis( interactive_beam_searcher, current_input, fixed_words_user, params_prediction, args, isle_indices, filtered_idx2word, index2word_y, None, None, None, unk_words_dict.keys(), unk_words_dict.values(), unks_in_isles) hypothesis_number += 1 hypothesis = u' '.join( hypothesis) # Hypothesis is unicode hypothesis = params_prediction['detokenize_f'](hypothesis) \ if args.detokenize_bpe else hypothesis logger.debug(u'Target: %s' % reference) logger.debug(u"Hypo_%d: %s" % (hypothesis_number, hypothesis)) # 2.2.8 Add a keystroke errors_sentence += 1 # 2.2.9 Add a mouse action if we moved the pointer if next_correction_pos - last_correct_pos > 1: mouse_actions_sentence += 1 last_correct_pos = next_correction_pos # 2.3 Final check: The reference is a subset of the hypothesis: Cut the hypothesis if len(reference) < len(hypothesis): hypothesis = hypothesis[:len(reference)] errors_sentence += 1 logger.debug(u"Cutting hypothesis") # 2.4 Security assertion assert hypothesis in references, "Error: The final hypothesis does not match with the reference! \n" \ "\t Split: %s \n" \ "\t Sentence: %d \n" \ "\t Hypothesis: %s\n" \ "\t Reference: %s" % (s, n_sample + 1, hypothesis, reference) # 3. Update user effort counters mouse_actions_sentence += 1 # This +1 is the validation action chars_sentence = len(hypothesis) total_errors += errors_sentence total_words += len(hypothesis.split()) total_chars += chars_sentence total_mouse_actions += mouse_actions_sentence # 3.1 Log some info logger.debug(u"Final hypotesis: %s" % hypothesis) logger.debug( u"%d errors. " u"Sentence WSR: %4f. " u"Sentence mouse strokes: %d " u"Sentence MAR: %4f. " u"Sentence MAR_c: %4f. " u"Sentence KSMR: %4f. " u"Accumulated (should only be considered for debugging purposes!) " u"WSR: %4f. " u"MAR: %4f. " u"MAR_c: %4f. " u"KSMR: %4f.\n\n\n\n" % (errors_sentence, float(errors_sentence) / len(hypothesis), mouse_actions_sentence, float(mouse_actions_sentence) / len(hypothesis), float(mouse_actions_sentence) / chars_sentence, float(errors_sentence + mouse_actions_sentence) / chars_sentence, float(total_errors) / total_words, float(total_mouse_actions) / total_words, float(total_mouse_actions) / total_chars, float(total_errors + total_mouse_actions) / total_chars)) # 4. If we are performing OL after each correct sample: if args.online: # 4.1 Compute model inputs # 4.1.1 Source text -> Already computed (used for the INMT process) # 4.1.2 State below state_below = dataset.loadText( [reference], vocabularies=dataset.vocabulary[ params['OUTPUTS_IDS_DATASET'][0]], max_len=params['MAX_OUTPUT_TEXT_LEN_TEST'], offset=1, fill=dataset.fill_text[params['INPUTS_IDS_DATASET'] [-1]], pad_on_batch=dataset.pad_on_batch[ params['INPUTS_IDS_DATASET'][-1]], words_so_far=False, loading_X=True)[0] # 4.1.3 Ground truth sample -> Interactively translated sentence trg_seq = dataset.loadTextOneHot( [reference], vocabularies=dataset.vocabulary[ params['OUTPUTS_IDS_DATASET'][0]], vocabulary_len=dataset.vocabulary_len[ params['OUTPUTS_IDS_DATASET'][0]], max_len=params['MAX_OUTPUT_TEXT_LEN_TEST'], offset=0, fill=dataset.fill_text[params['OUTPUTS_IDS_DATASET'] [0]], pad_on_batch=dataset.pad_on_batch[ params['OUTPUTS_IDS_DATASET'][0]], words_so_far=False, sample_weights=params['SAMPLE_WEIGHTS'], loading_X=False) # 4.2 Train online! online_trainer.train_online( [np.asarray([current_input]), state_below], trg_seq, trg_words=[reference]) # 5 Write correct sentences into a file list2file(args.dest, [hypothesis], permission='a') if (n_sample + 1) % 50 == 0: logger.info(u"%d sentences processed" % (n_sample + 1)) logger.info(u"Current speed is {} per sentence".format( (time.time() - start_time) / (n_sample + 1))) logger.info(u"Current WSR is: %f" % (float(total_errors) / total_words)) logger.info(u"Current MAR is: %f" % (float(total_mouse_actions) / total_words)) logger.info(u"Current MAR_c is: %f" % (float(total_mouse_actions) / total_chars)) logger.info(u"Current KSMR is: %f" % (float(total_errors + total_mouse_actions) / total_chars)) # 6. Final! # 6.1 Log some information print(u"Total number of errors:", total_errors) print(u"Total number selections", total_mouse_actions) print(u"WSR: %f" % (float(total_errors) / total_words)) print(u"MAR: %f" % (float(total_mouse_actions) / total_words)) print(u"MAR_c: %f" % (float(total_mouse_actions) / total_chars)) print(u"KSMR: %f" % (float(total_errors + total_mouse_actions) / total_chars)) except KeyboardInterrupt: print(u'Interrupted!') print(u"Total number of corrections (up to now):", total_errors) print(u"WSR: %f" % (float(total_errors) / total_words)) print(u"MAR: %f" % (float(total_mouse_actions) / total_words)) print(u"MAR_c: %f" % (float(total_mouse_actions) / total_chars)) print(u"KSMR: %f" % (float(total_errors + total_mouse_actions) / total_chars))