def _apply_delete_mask(self, node, inbound_masks): """Apply the inbound delete mask and return the outbound delete mask When specific channels in a layer or layer instance are deleted, the mask propagates information about which channels are affected to downstream layers. If the layer contains weights, those which were previously connected to the deleted channels are deleted and outbound masks are set to None since further downstream layers aren't affected. If the layer does not contain weights, its output mask is calculated to reflect any transformations performed by the layer to ensure that information about the deleted channels is propagated downstream. Arguments: node(Node): The node where the delete mask is applied. inbound_masks: Mask(s) from inbound node(s). Returns: new_layer: Pass through `layer` if it has no weights, otherwise a new `Layer` object with weights corresponding to the inbound mask deleted. outbound_mask: Mask corresponding to `new_layer`. """ # TODO: This breaks layer sharing. Write a test for this. # if delete_mask is None or all values are True, it does not affect # this layer or any layers above/downstream from it print(node, "node") print(inbound_masks, "inbound_masks") layer = node.outbound_layer print(layer, "outbound layer") if all(mask is None for mask in inbound_masks): new_layer = layer outbound_mask = None print(node, "node if return") return new_layer, outbound_mask elif any(mask is None for mask in inbound_masks): inbound_masks = [ np.ones(shape[1:], dtype=bool) if inbound_masks[i] is None else inbound_masks[i] for i, shape in enumerate(node.input_shapes) ] output_shape = utils.single_element(node.output_shapes) input_shape = utils.single_element(node.input_shapes) data_format = getattr(layer, 'data_format', 'channels_last') inbound_masks = utils.single_element(inbound_masks) print(node, "node") # otherwise, delete_mask.shape should be: layer.input_shape[1:] layer_class = layer.__class__.__name__ if layer_class == 'InputLayer': raise RuntimeError('This should never get here!') elif layer_class == 'Dense': if np.all(inbound_masks): new_layer = layer else: weights = layer.get_weights() weights[0] = weights[0][np.where(inbound_masks)[0], :] config = layer.get_config() config['weights'] = weights new_layer = type(layer).from_config(config) outbound_mask = None elif layer_class == 'Flatten': outbound_mask = np.reshape(inbound_masks, [ -1, ]) new_layer = layer elif layer_class in ('Conv1D', 'Conv2D', 'Conv3D'): if np.all(inbound_masks): new_layer = layer print("npall conv1d") else: if data_format == 'channels_first': inbound_masks = np.swapaxes(inbound_masks, 0, -1) # Conv layer: trim down inbound_masks to filter shape k_size = layer.kernel_size index = [slice(None, dim_size, None) for dim_size in k_size] inbound_masks = inbound_masks[index + [slice(None)]] # Delete unused weights to obtain new_weights weights = layer.get_weights() # Each deleted channel was connected to all of the channels # in layer; therefore, the mask must be repeated for each # channel. # `delete_mask`'s size: size(inbound_mask)+[layer.filters] # TODO: replace repeat with tile delete_mask = np.repeat(inbound_masks[..., np.newaxis], weights[0].shape[-1], axis=-1) new_shape = list(weights[0].shape) new_shape[-2] = -1 # Weights always have channels_last print(weights[0].shape, "weights[0]") print(delete_mask.shape, "deletemask") print(new_shape, "new_shape") weights[0] = np.reshape(weights[0][delete_mask], new_shape) # Instantiate new layer with new_weights config = layer.get_config() config['weights'] = weights new_layer = type(layer).from_config(config) outbound_mask = None elif layer_class in ('Cropping1D', 'Cropping2D', 'Cropping3D', 'MaxPooling1D', 'MaxPooling2D', 'MaxPooling3D', 'AveragePooling1D', 'AveragePooling2D', 'AveragePooling3D'): index = [slice(None, x, None) for x in output_shape[1:]] if data_format == 'channels_first': index[0] = slice(None) elif data_format == 'channels_last': index[-1] = slice(None) else: raise ValueError('Invalid data format') outbound_mask = inbound_masks[index] new_layer = layer elif layer_class in ('UpSampling1D', 'UpSampling2D', 'UpSampling3D', 'ZeroPadding1D', 'ZeroPadding2D', 'ZeroPadding3D'): # Get slice of mask with all singleton dimensions except # channels dimension index = [slice(1)] * (len(input_shape) - 1) tile_shape = list(output_shape[1:]) if data_format == 'channels_first': index[0] = slice(None) tile_shape[0] = 1 elif data_format == 'channels_last': index[-1] = slice(None) tile_shape[-1] = 1 else: raise ValueError('Invalid data format') channels_vector = inbound_masks[index] # Tile this slice to create the outbound mask outbound_mask = np.tile(channels_vector, tile_shape) new_layer = layer elif layer_class in ('GlobalMaxPooling1D', 'GlobalMaxPooling2D', 'GlobalAveragePooling1D', 'GlobalAveragePooling2D'): # Get slice of mask with all singleton dimensions except # channels dimension index = [0] * (len(input_shape) - 1) if data_format == 'channels_first': index[0] = slice(None) elif data_format == 'channels_last': index[-1] = slice(None) else: raise ValueError('Invalid data format') channels_vector = inbound_masks[index] # Tile this slice to create the outbound mask outbound_mask = channels_vector new_layer = layer elif layer_class in ('Dropout', 'Activation', 'SpatialDropout1D', 'SpatialDropout2D', 'SpatialDropout3D', 'ActivityRegularization', 'Masking', 'LeakyReLU', 'ELU', 'ThresholdedReLU', 'GaussianNoise', 'GaussianDropout', 'AlphaDropout'): # Pass-through layers outbound_mask = inbound_masks new_layer = layer elif layer_class == 'Reshape': outbound_mask = np.reshape(inbound_masks, layer.target_shape) new_layer = layer elif layer_class == 'Permute': outbound_mask = np.transpose(inbound_masks, [x - 1 for x in layer.dims]) new_layer = layer elif layer_class == 'RepeatVector': outbound_mask = np.repeat(np.expand_dims(inbound_masks, 0), layer.n, axis=0) new_layer = layer elif layer_class == 'Embedding': # Embedding will always be the first layer so it doesn't need # to consider the inbound_delete_mask if inbound_masks is not None: raise ValueError('Channels cannot be deleted bedore Embedding ' 'layers because they change the number of ' 'channels.') outbound_mask = None new_layer = layer elif layer_class in ('Add', 'Multiply', 'Average', 'Maximum'): # The inputs must be the same size if not utils.all_equal(inbound_masks): ValueError( '{0} layers must have the same size inputs. All ' 'inbound nodes must have the same channels deleted'.format( layer_class)) outbound_mask = inbound_masks[1] new_layer = layer elif layer_class == 'Concatenate': axis = layer.axis if layer.axis < 0: axis = axis % len(layer.input_shape[0]) # Below: axis=axis-1 because the mask excludes the batch dimension outbound_mask = np.concatenate(inbound_masks, axis=axis - 1) new_layer = layer elif layer_class in ('SimpleRNN', 'GRU', 'LSTM'): if np.all(inbound_masks): new_layer = layer else: weights = layer.get_weights() weights[0] = weights[0][np.where(inbound_masks[0, :])[0], :] config = layer.get_config() config['weights'] = weights new_layer = type(layer).from_config(config) outbound_mask = None elif layer_class == 'BatchNormalization': outbound_mask = inbound_masks # Get slice of mask with all singleton dimensions except # channels dimension index = [0] * (len(input_shape)) index[layer.axis] = slice(None) index = index[1:] # TODO: Maybe use channel indices everywhere instead of masks? channel_indices = np.where(inbound_masks[index] == False)[0] weights = [ np.delete(w, channel_indices, axis=-1) for w in layer.get_weights() ] new_layer = BatchNormalization.from_config(layer.get_config()) new_input_shape = list(input_shape) new_input_shape[new_layer.axis] -= len(channel_indices) new_layer.build(new_input_shape) new_layer.set_weights(weights) else: # Not implemented: # - Lambda # - SeparableConv2D # - Conv2DTranspose # - LocallyConnected1D # - LocallyConnected2D # - TimeDistributed # - Bidirectional # - Dot # - PReLU # Warning/error needed for Reshape if channels axis is split raise ValueError('"{0}" layers are currently ' 'unsupported.'.format(layer_class)) print(node, "node return") return new_layer, outbound_mask
def _apply_delete_mask(self, node, inbound_masks): """Apply the inbound delete mask and return the outbound delete mask When specific channels in a layer or layer instance are deleted, the mask propagates information about which channels are affected to downstream layers. If the layer contains weights, those which were previously connected to the deleted channels are deleted and outbound masks are set to None since further downstream layers aren't affected. If the layer does not contain weights, its output mask is calculated to reflect any transformations performed by the layer to ensure that information about the deleted channels is propagated downstream. Arguments: node(Node): The node where the delete mask is applied. inbound_masks: Mask(s) from inbound node(s). Returns: new_layer: Pass through `layer` if it has no weights, otherwise a new `Layer` object with weights corresponding to the inbound mask deleted. outbound_mask: Mask corresponding to `new_layer`. """ # if delete_mask is None or all values are True, it does not affect # this layer or any layers above/downstream from it layer = node.outbound_layer if all(mask is None for mask in inbound_masks): new_layer = layer outbound_mask = None return new_layer, outbound_mask # If one or more of the masks are None, replace them with ones. if any(mask is None for mask in inbound_masks): inbound_masks = [ np.ones(shape[1:], dtype=bool) if inbound_masks[i] is None else inbound_masks[i] for i, shape in enumerate(node.input_shapes) ] # If the layer is shared and has already been affected by this # operation, use the cached new layer. if (len(get_inbound_nodes(layer)) > 1 and layer in self._replace_layers_map.keys()): return self._replace_layers_map[layer] output_shape = utils.single_element(node.output_shapes) input_shape = utils.single_element(node.input_shapes) data_format = getattr(layer, "data_format", "channels_last") inbound_masks = utils.single_element(inbound_masks) # otherwise, delete_mask.shape should be: layer.input_shape[1:] layer_class = layer.__class__.__name__ if layer_class == "InputLayer": raise RuntimeError("This should never get here!") elif layer_class == "Dense": if np.all(inbound_masks): new_layer = layer else: weights = layer.get_weights() weights[0] = weights[0][np.where(inbound_masks)[0], :] config = layer.get_config() config["weights"] = weights new_layer = type(layer).from_config(config) outbound_mask = None elif layer_class == "Flatten": outbound_mask = np.reshape(inbound_masks, [ -1, ]) new_layer = layer elif layer_class in ("Conv1D", "Conv2D", "Conv3D"): if np.all(inbound_masks): new_layer = layer else: if data_format == "channels_first": inbound_masks = np.swapaxes(inbound_masks, 0, -1) # Conv layer: trim down inbound_masks to filter shape k_size = layer.kernel_size index = [slice(None, 1, None) for _ in k_size] inbound_masks = inbound_masks[tuple(index + [slice(None)])] weights = layer.get_weights() # Delete unused weights to obtain new_weights # Each deleted channel was connected to all of the channels # in layer; therefore, the mask must be repeated for each # channel. # `delete_mask`'s size: size(weights[0]) delete_mask = np.tile( inbound_masks[..., np.newaxis], list(k_size) + [1, weights[0].shape[-1]], ) new_shape = list(weights[0].shape) new_shape[-2] = -1 # Weights always have channels_last weights[0] = np.reshape(weights[0][delete_mask], new_shape) # Instantiate new layer with new_weights config = layer.get_config() config["weights"] = weights new_layer = type(layer).from_config(config) outbound_mask = None elif layer_class in ( "Cropping1D", "Cropping2D", "Cropping3D", "MaxPooling1D", "MaxPooling2D", "MaxPooling3D", "AveragePooling1D", "AveragePooling2D", "AveragePooling3D", ): index = [slice(None, x, None) for x in output_shape[1:]] if data_format == "channels_first": index[0] = slice(None) elif data_format == "channels_last": index[-1] = slice(None) else: raise ValueError("Invalid data format") outbound_mask = inbound_masks[tuple(index)] new_layer = layer elif layer_class in ( "UpSampling1D", "UpSampling2D", "UpSampling3D", "ZeroPadding1D", "ZeroPadding2D", "ZeroPadding3D", ): # Get slice of mask with all singleton dimensions except # channels dimension index = [slice(1)] * (len(input_shape) - 1) tile_shape = list(output_shape[1:]) if data_format == "channels_first": index[0] = slice(None) tile_shape[0] = 1 elif data_format == "channels_last": index[-1] = slice(None) tile_shape[-1] = 1 else: raise ValueError("Invalid data format") channels_vector = inbound_masks[tuple(index)] # Tile this slice to create the outbound mask outbound_mask = np.tile(channels_vector, tile_shape) new_layer = layer elif layer_class in ( "GlobalMaxPooling1D", "GlobalMaxPooling2D", "GlobalAveragePooling1D", "GlobalAveragePooling2D", ): # Get slice of mask with all singleton dimensions except # channels dimension index = [0] * (len(input_shape) - 1) if data_format == "channels_first": index[0] = slice(None) elif data_format == "channels_last": index[-1] = slice(None) else: raise ValueError("Invalid data format") channels_vector = inbound_masks[tuple(index)] # Tile this slice to create the outbound mask outbound_mask = channels_vector new_layer = layer elif layer_class in ( "Dropout", "Activation", "SpatialDropout1D", "SpatialDropout2D", "SpatialDropout3D", "ActivityRegularization", "Masking", "LeakyReLU", "ELU", "ThresholdedReLU", "GaussianNoise", "GaussianDropout", "AlphaDropout", "Rename", ) or (layer_class == "TensorFlowOpLayer" and layer.node_def.op == "ResizeBilinear"): # Pass-through layers outbound_mask = inbound_masks new_layer = layer elif layer_class == "Reshape": outbound_mask = np.reshape(inbound_masks, layer.target_shape) new_layer = layer elif layer_class == "Permute": outbound_mask = np.transpose(inbound_masks, [x - 1 for x in layer.dims]) new_layer = layer elif layer_class == "RepeatVector": outbound_mask = np.repeat(np.expand_dims(inbound_masks, 0), layer.n, axis=0) new_layer = layer elif layer_class == "Embedding": # Embedding will always be the first layer so it doesn't need # to consider the inbound_delete_mask if inbound_masks is not None: raise ValueError("Channels cannot be deleted bedore Embedding " "layers because they change the number of " "channels.") outbound_mask = None new_layer = layer elif layer_class in ("Add", "Multiply", "Average", "Maximum"): # The inputs must be the same size if not utils.all_equal(inbound_masks): ValueError( "{0} layers must have the same size inputs. All " "inbound nodes must have the same channels deleted".format( layer_class)) outbound_mask = inbound_masks[1] new_layer = layer elif layer_class == "Concatenate": axis = layer.axis if layer.axis < 0: axis = axis % len(layer.input_shape[0]) # Below: axis=axis-1 because the mask excludes the batch dimension outbound_mask = np.concatenate(inbound_masks, axis=axis - 1) new_layer = layer elif layer_class in ("SimpleRNN", "GRU", "LSTM"): if np.all(inbound_masks): new_layer = layer else: weights = layer.get_weights() weights[0] = weights[0][np.where(inbound_masks[0, :])[0], :] config = layer.get_config() config["weights"] = weights new_layer = type(layer).from_config(config) outbound_mask = None elif layer_class == "BatchNormalization": outbound_mask = inbound_masks # Get slice of mask with all singleton dimensions except # channels dimension index = [0] * (len(input_shape)) index[layer.axis] = slice(None) index = index[1:] # TODO: Maybe use channel indices everywhere instead of masks? channel_indices = np.where(inbound_masks[tuple(index)] == False)[0] weights = [ np.delete(w, channel_indices, axis=-1) for w in layer.get_weights() ] new_layer = BatchNormalization.from_config(layer.get_config()) new_input_shape = list(input_shape) new_input_shape[new_layer.axis] -= len(channel_indices) new_layer.build(new_input_shape) new_layer.set_weights(weights) else: # Not implemented: # - Lambda # - SeparableConv2D # - Conv2DTranspose # - LocallyConnected1D # - LocallyConnected2D # - TimeDistributed # - Bidirectional # - Dot # - PReLU # Warning/error needed for Reshape if channels axis is split raise ValueError('"{0}" layers are currently ' "unsupported.".format(layer_class)) if len(get_inbound_nodes(layer)) > 1 and new_layer != layer: self._replace_layers_map[layer] = (new_layer, outbound_mask) return new_layer, outbound_mask