def _delete_channels(self, node, inputs, input_masks, channels=None, layer_name=None): """Delete selected channels of node.outbound_layer. Add it to the graph. """ old_layer = node.outbound_layer old_layer_output = utils.single_element(node.output_tensors) # Create a mask to propagate the deleted channels to downstream layers new_delete_mask = self._make_delete_mask(old_layer, channels) if len(set(channels)) == getattr(old_layer, utils.get_channels_attr(old_layer)): self._replace_tensors[old_layer_output] = (None, new_delete_mask) return None # If this layer has already been operated on, use the cached copy of # the new layer. Otherwise, apply the inbound delete mask and # delete channels to obtain the new layer if old_layer in self._new_layers_map.keys(): new_layer = self._new_layers_map[old_layer] else: temp_layer, new_mask = self._apply_delete_mask(node, input_masks) # This call is needed to initialise input_shape and output_shape temp_layer(utils.single_element(inputs)) new_layer = self._delete_channel_weights(temp_layer, channels) if layer_name: new_layer.name = layer_name self._new_layers_map[old_layer] = new_layer new_output = new_layer(utils.single_element(inputs)) # Replace the original layer's output with the modified layer's output self._replace_tensors[old_layer_output] = (new_output, new_delete_mask)
def _rebuild_rec(node): """Rebuild the graph up to `node` recursively. Args: node(Node): Node to rebuild up to. Returns: (tuple) containing : The output tensor of the rebuilt `node` The output mask of the rebuilt `node` """ # TODO: What happens if nodes have multiple output tensors? # Does that ever happen? #pdb.set_trace() print(node, "rebuild node val") layer = node.outbound_layer #logging.debug('getting inputs for: {0}'.format(layer.name)) node_output = utils.single_element(node.output_tensors) # First check for conditions to bottom out the recursion # Check for replaced tensors before any other checks: # these are created by the surgery methods. if node_output in self._replace_tensors: '''logging.debug('bottomed out at replaced output: {0}'.format( node_output))''' output, output_mask = self._replace_tensors[node_output] #pdb.set_trace() return output, output_mask # Next check if the current node has already been rebuilt. elif node in self._finished_nodes: #logging.debug('reached finished node: {0}'.format(node)) #pdb.set_trace() return self._finished_nodes[node] # Next check if one of the graph_inputs has been reached. elif node_output in graph_inputs: #logging.debug('bottomed out at a model input') output_mask = graph_input_masks[graph_inputs.index( node_output)] #pdb.set_trace() return node_output, output_mask # Otherwise recursively call this method on the inbound nodes. else: inbound_nodes = utils.get_inbound_nodes(node) # Recursively rebuild the model up to `node`s inbound nodes to # obtain its inputs and input masks inputs, input_masks = zip( *[_rebuild_rec(n) for n in inbound_nodes]) # Apply masks to the node's layer's weights and call the layer # on the inputs new_layer, output_mask = self._apply_delete_mask( node, input_masks) output = new_layer(utils.single_element(list(inputs))) # Record that this node has been rebuild self._finished_nodes[node] = (output, output_mask) #logging.debug('layer complete: {0}'.format(layer.name)) #pdb.set_trace() return output, output_mask
def _replace_layer(self, node, inputs, input_masks, new_layer=None): """Replace node.outbound_layer with new_layer. Add it to the graph.""" # Call the new layer on the rebuild submodel's inputs new_output = new_layer(utils.single_element(inputs)) # Replace the original layer's output with the new layer's output replaced_layer_output = utils.single_element(node.output_tensors) input_masks = utils.single_element(input_masks) self._replace_tensors[replaced_layer_output] = (new_output, input_masks)
def _delete_layer(self, node, inputs, input_masks): """Skip adding node.outbound_layer when building the graph.""" # Skip the deleted layer by replacing its outputs with it inputs if len(inputs) >= 2: raise ValueError('Cannot insert new layer at node with multiple ' 'inbound layers.') inputs = utils.single_element(inputs) input_masks = utils.single_element(input_masks) deleted_layer_output = utils.single_element(node.output_tensors) self._replace_tensors[deleted_layer_output] = (inputs, input_masks)
def _insert_layer(self, node, inputs, input_masks, new_layer=None): """Insert new_layer into the graph before node.outbound_layer.""" # This will not work for nodes with multiple inbound layers if len(inputs) >= 2: raise ValueError('Cannot insert new layer at node with multiple ' 'inbound layers.') # Call the new layer on the inbound layer's output new_output = new_layer(utils.single_element(inputs)) # Replace the inbound layer's output with the new layer's output old_output = node.input_tensors[0] input_masks = utils.single_element(input_masks) self._replace_tensors[old_output] = (new_output, input_masks)
def _delete_channels(self, node, inputs, input_masks, channels=None): """Delete selected channels of node.outbound_layer. Add it to the graph. """ old_layer = node.outbound_layer #pdb.set_trace() # If this layer has already been operated on, use the cached copy of # the new layer. Otherwise, apply the inbound delete mask and # delete channels to obtain the new layer if old_layer in self._new_layers_map.iterkeys(): new_layer = self._new_layers_map[old_layer] else: temp_layer, new_mask = self._apply_delete_mask(node, input_masks) # This call is needed to initialise input_shape and output_shape temp_layer(utils.single_element(inputs)) new_layer = self._delete_channel_weights(temp_layer, channels) self._new_layers_map[old_layer] = new_layer # Create a mask to propagate the deleted channels to downstream layers new_delete_mask = self._make_delete_mask(old_layer, channels) # Call the new layer on the rebuild submodel's inputs new_output = new_layer(utils.single_element(inputs)) # Replace the original layer's output with the modified layer's output old_layer_output = utils.single_element(node.output_tensors) self._replace_tensors[old_layer_output] = (new_output, new_delete_mask)
def get_apoz(model, layer, x_val, node_indices=None): if isinstance(layer, str): layer = model.get_layer(name=layer) # Check that layer is in the model if layer not in model.layers: raise ValueError('layer is not a valid Layer in model.') layer_node_indices = utils.find_nodes_in_model(model, layer) # If no nodes are specified, all of the layer's inbound nodes which are # in model are selected. if not node_indices: node_indices = layer_node_indices # Check for duplicate node indices elif len(node_indices) != len(set(node_indices)): raise ValueError('`node_indices` contains duplicate values.') # Check that all of the selected nodes are in the layer elif not set(node_indices).issubset(layer_node_indices): raise ValueError('One or more nodes specified by `layer` and ' '`node_indices` are not in `model`.') data_format = getattr(layer, 'data_format', 'channels_last') # Perform the forward pass and get the activations of the layer. mean_calculator = utils.MeanCalculator(sum_axis=0) for node_index in node_indices: act_layer, act_index = utils.find_activation_layer(layer, node_index) # Get activations if hasattr(x_val, "__iter__"): temp_model = Model(model.inputs, act_layer.get_output_at(act_index)) a = temp_model.predict(x_val) else: get_activations = k.function( [utils.single_element(model.inputs), k.learning_phase()], [act_layer.get_output_at(act_index)]) a = get_activations([x_val, 0])[0] # Ensure that the channels axis is last if data_format == 'channels_first': a = np.swapaxes(a, 1, -1) # Flatten all except channels axis activations = np.reshape(a, [-1, a.shape[-1]]) zeros = (activations == 0).astype(int) mean_calculator.add(zeros) return mean_calculator.calculate()
def get_apoz(model, layer, x_val, node_indices=None, batch_size=1): """Identify neurons with high Average Percentage of Zeros (APoZ). The APoZ a.k.a. (A)verage (P)ercentage (o)f activations equal to (Z)ero, is a metric for the usefulness of a channel defined in this paper: "Network Trimming: A Data-Driven Neuron Pruning Approach towards Efficient Deep Architectures" - [Hu et al. (2016)][] `high_apoz()` enables the pruning methodology described in this paper to be replicated. If node_indices are not specified and the layer is shared within the model the APoZ will be calculated over all instances of the shared layer. Args: model: A Keras model. layer: The layer whose channels will be evaluated for pruning. x_val: The input of the validation set. This will be used to calculate the activations of the layer of interest. node_indices(list[int]): (optional) A list of node indices. Returns: List of the APoZ values for each channel in the layer. """ if isinstance(layer, str): layer = model.get_layer(name=layer) # Check that layer is in the model if layer not in model.layers: raise ValueError('layer is not a valid Layer in model.') layer_node_indices = utils.find_nodes_in_model(model, layer) # If no nodes are specified, all of the layer's inbound nodes which are # in model are selected. if not node_indices: node_indices = layer_node_indices # Check for duplicate node indices elif len(node_indices) != len(set(node_indices)): raise ValueError('`node_indices` contains duplicate values.') # Check that all of the selected nodes are in the layer elif not set(node_indices).issubset(layer_node_indices): raise ValueError('One or more nodes specified by `layer` and ' '`node_indices` are not in `model`.') data_format = getattr(layer, 'data_format', 'channels_last') # Perform the forward pass and get the activations of the layer. mean_calculator = utils.MeanCalculator(sum_axis=0) for node_index in node_indices: act_layer, act_index = utils.find_activation_layer(layer, node_index) # Get activations if isinstance(x_val, np.ndarray): temp_model = Model(model.inputs, act_layer.get_output_at(act_index)) a = temp_model.predict_generator( x_val, x_val.shape[0] // batch_size) elif hasattr(x_val, "__iter__"): temp_model = Model(model.inputs, act_layer.get_output_at(act_index)) a = temp_model.predict_generator( x_val, x_val.n // batch_size) else: get_activations = k.function( [utils.single_element(model.inputs), k.learning_phase()], [act_layer.get_output_at(act_index)]) a = get_activations([x_val, 0])[0] # Ensure that the channels axis is last if data_format == 'channels_first': a = np.swapaxes(a, 1, -1) # Flatten all except channels axis activations = np.reshape(a, [-1, a.shape[-1]]) zeros = (activations == 0).astype(int) mean_calculator.add(zeros) return mean_calculator.calculate()
def _apply_delete_mask(self, node, inbound_masks): """Apply the inbound delete mask and return the outbound delete mask When specific channels in a layer or layer instance are deleted, the mask propagates information about which channels are affected to downstream layers. If the layer contains weights, those which were previously connected to the deleted channels are deleted and outbound masks are set to None since further downstream layers aren't affected. If the layer does not contain weights, its output mask is calculated to reflect any transformations performed by the layer to ensure that information about the deleted channels is propagated downstream. Arguments: node(Node): The node where the delete mask is applied. inbound_masks: Mask(s) from inbound node(s). Returns: new_layer: Pass through `layer` if it has no weights, otherwise a new `Layer` object with weights corresponding to the inbound mask deleted. outbound_mask: Mask corresponding to `new_layer`. """ # TODO: This breaks layer sharing. Write a test for this. # if delete_mask is None or all values are True, it does not affect # this layer or any layers above/downstream from it print(node, "node") print(inbound_masks, "inbound_masks") layer = node.outbound_layer print(layer, "outbound layer") if all(mask is None for mask in inbound_masks): new_layer = layer outbound_mask = None print(node, "node if return") return new_layer, outbound_mask elif any(mask is None for mask in inbound_masks): inbound_masks = [ np.ones(shape[1:], dtype=bool) if inbound_masks[i] is None else inbound_masks[i] for i, shape in enumerate(node.input_shapes) ] output_shape = utils.single_element(node.output_shapes) input_shape = utils.single_element(node.input_shapes) data_format = getattr(layer, 'data_format', 'channels_last') inbound_masks = utils.single_element(inbound_masks) print(node, "node") # otherwise, delete_mask.shape should be: layer.input_shape[1:] layer_class = layer.__class__.__name__ if layer_class == 'InputLayer': raise RuntimeError('This should never get here!') elif layer_class == 'Dense': if np.all(inbound_masks): new_layer = layer else: weights = layer.get_weights() weights[0] = weights[0][np.where(inbound_masks)[0], :] config = layer.get_config() config['weights'] = weights new_layer = type(layer).from_config(config) outbound_mask = None elif layer_class == 'Flatten': outbound_mask = np.reshape(inbound_masks, [ -1, ]) new_layer = layer elif layer_class in ('Conv1D', 'Conv2D', 'Conv3D'): if np.all(inbound_masks): new_layer = layer print("npall conv1d") else: if data_format == 'channels_first': inbound_masks = np.swapaxes(inbound_masks, 0, -1) # Conv layer: trim down inbound_masks to filter shape k_size = layer.kernel_size index = [slice(None, dim_size, None) for dim_size in k_size] inbound_masks = inbound_masks[index + [slice(None)]] # Delete unused weights to obtain new_weights weights = layer.get_weights() # Each deleted channel was connected to all of the channels # in layer; therefore, the mask must be repeated for each # channel. # `delete_mask`'s size: size(inbound_mask)+[layer.filters] # TODO: replace repeat with tile delete_mask = np.repeat(inbound_masks[..., np.newaxis], weights[0].shape[-1], axis=-1) new_shape = list(weights[0].shape) new_shape[-2] = -1 # Weights always have channels_last print(weights[0].shape, "weights[0]") print(delete_mask.shape, "deletemask") print(new_shape, "new_shape") weights[0] = np.reshape(weights[0][delete_mask], new_shape) # Instantiate new layer with new_weights config = layer.get_config() config['weights'] = weights new_layer = type(layer).from_config(config) outbound_mask = None elif layer_class in ('Cropping1D', 'Cropping2D', 'Cropping3D', 'MaxPooling1D', 'MaxPooling2D', 'MaxPooling3D', 'AveragePooling1D', 'AveragePooling2D', 'AveragePooling3D'): index = [slice(None, x, None) for x in output_shape[1:]] if data_format == 'channels_first': index[0] = slice(None) elif data_format == 'channels_last': index[-1] = slice(None) else: raise ValueError('Invalid data format') outbound_mask = inbound_masks[index] new_layer = layer elif layer_class in ('UpSampling1D', 'UpSampling2D', 'UpSampling3D', 'ZeroPadding1D', 'ZeroPadding2D', 'ZeroPadding3D'): # Get slice of mask with all singleton dimensions except # channels dimension index = [slice(1)] * (len(input_shape) - 1) tile_shape = list(output_shape[1:]) if data_format == 'channels_first': index[0] = slice(None) tile_shape[0] = 1 elif data_format == 'channels_last': index[-1] = slice(None) tile_shape[-1] = 1 else: raise ValueError('Invalid data format') channels_vector = inbound_masks[index] # Tile this slice to create the outbound mask outbound_mask = np.tile(channels_vector, tile_shape) new_layer = layer elif layer_class in ('GlobalMaxPooling1D', 'GlobalMaxPooling2D', 'GlobalAveragePooling1D', 'GlobalAveragePooling2D'): # Get slice of mask with all singleton dimensions except # channels dimension index = [0] * (len(input_shape) - 1) if data_format == 'channels_first': index[0] = slice(None) elif data_format == 'channels_last': index[-1] = slice(None) else: raise ValueError('Invalid data format') channels_vector = inbound_masks[index] # Tile this slice to create the outbound mask outbound_mask = channels_vector new_layer = layer elif layer_class in ('Dropout', 'Activation', 'SpatialDropout1D', 'SpatialDropout2D', 'SpatialDropout3D', 'ActivityRegularization', 'Masking', 'LeakyReLU', 'ELU', 'ThresholdedReLU', 'GaussianNoise', 'GaussianDropout', 'AlphaDropout'): # Pass-through layers outbound_mask = inbound_masks new_layer = layer elif layer_class == 'Reshape': outbound_mask = np.reshape(inbound_masks, layer.target_shape) new_layer = layer elif layer_class == 'Permute': outbound_mask = np.transpose(inbound_masks, [x - 1 for x in layer.dims]) new_layer = layer elif layer_class == 'RepeatVector': outbound_mask = np.repeat(np.expand_dims(inbound_masks, 0), layer.n, axis=0) new_layer = layer elif layer_class == 'Embedding': # Embedding will always be the first layer so it doesn't need # to consider the inbound_delete_mask if inbound_masks is not None: raise ValueError('Channels cannot be deleted bedore Embedding ' 'layers because they change the number of ' 'channels.') outbound_mask = None new_layer = layer elif layer_class in ('Add', 'Multiply', 'Average', 'Maximum'): # The inputs must be the same size if not utils.all_equal(inbound_masks): ValueError( '{0} layers must have the same size inputs. All ' 'inbound nodes must have the same channels deleted'.format( layer_class)) outbound_mask = inbound_masks[1] new_layer = layer elif layer_class == 'Concatenate': axis = layer.axis if layer.axis < 0: axis = axis % len(layer.input_shape[0]) # Below: axis=axis-1 because the mask excludes the batch dimension outbound_mask = np.concatenate(inbound_masks, axis=axis - 1) new_layer = layer elif layer_class in ('SimpleRNN', 'GRU', 'LSTM'): if np.all(inbound_masks): new_layer = layer else: weights = layer.get_weights() weights[0] = weights[0][np.where(inbound_masks[0, :])[0], :] config = layer.get_config() config['weights'] = weights new_layer = type(layer).from_config(config) outbound_mask = None elif layer_class == 'BatchNormalization': outbound_mask = inbound_masks # Get slice of mask with all singleton dimensions except # channels dimension index = [0] * (len(input_shape)) index[layer.axis] = slice(None) index = index[1:] # TODO: Maybe use channel indices everywhere instead of masks? channel_indices = np.where(inbound_masks[index] == False)[0] weights = [ np.delete(w, channel_indices, axis=-1) for w in layer.get_weights() ] new_layer = BatchNormalization.from_config(layer.get_config()) new_input_shape = list(input_shape) new_input_shape[new_layer.axis] -= len(channel_indices) new_layer.build(new_input_shape) new_layer.set_weights(weights) else: # Not implemented: # - Lambda # - SeparableConv2D # - Conv2DTranspose # - LocallyConnected1D # - LocallyConnected2D # - TimeDistributed # - Bidirectional # - Dot # - PReLU # Warning/error needed for Reshape if channels axis is split raise ValueError('"{0}" layers are currently ' 'unsupported.'.format(layer_class)) print(node, "node return") return new_layer, outbound_mask
def _apply_delete_mask(self, node, inbound_masks): """Apply the inbound delete mask and return the outbound delete mask When specific channels in a layer or layer instance are deleted, the mask propagates information about which channels are affected to downstream layers. If the layer contains weights, those which were previously connected to the deleted channels are deleted and outbound masks are set to None since further downstream layers aren't affected. If the layer does not contain weights, its output mask is calculated to reflect any transformations performed by the layer to ensure that information about the deleted channels is propagated downstream. Arguments: node(Node): The node where the delete mask is applied. inbound_masks: Mask(s) from inbound node(s). Returns: new_layer: Pass through `layer` if it has no weights, otherwise a new `Layer` object with weights corresponding to the inbound mask deleted. outbound_mask: Mask corresponding to `new_layer`. """ # if delete_mask is None or all values are True, it does not affect # this layer or any layers above/downstream from it layer = node.outbound_layer if all(mask is None for mask in inbound_masks): new_layer = layer outbound_mask = None return new_layer, outbound_mask # If one or more of the masks are None, replace them with ones. if any(mask is None for mask in inbound_masks): inbound_masks = [ np.ones(shape[1:], dtype=bool) if inbound_masks[i] is None else inbound_masks[i] for i, shape in enumerate(node.input_shapes) ] # If the layer is shared and has already been affected by this # operation, use the cached new layer. if (len(get_inbound_nodes(layer)) > 1 and layer in self._replace_layers_map.keys()): return self._replace_layers_map[layer] output_shape = utils.single_element(node.output_shapes) input_shape = utils.single_element(node.input_shapes) data_format = getattr(layer, "data_format", "channels_last") inbound_masks = utils.single_element(inbound_masks) # otherwise, delete_mask.shape should be: layer.input_shape[1:] layer_class = layer.__class__.__name__ if layer_class == "InputLayer": raise RuntimeError("This should never get here!") elif layer_class == "Dense": if np.all(inbound_masks): new_layer = layer else: weights = layer.get_weights() weights[0] = weights[0][np.where(inbound_masks)[0], :] config = layer.get_config() config["weights"] = weights new_layer = type(layer).from_config(config) outbound_mask = None elif layer_class == "Flatten": outbound_mask = np.reshape(inbound_masks, [ -1, ]) new_layer = layer elif layer_class in ("Conv1D", "Conv2D", "Conv3D"): if np.all(inbound_masks): new_layer = layer else: if data_format == "channels_first": inbound_masks = np.swapaxes(inbound_masks, 0, -1) # Conv layer: trim down inbound_masks to filter shape k_size = layer.kernel_size index = [slice(None, 1, None) for _ in k_size] inbound_masks = inbound_masks[tuple(index + [slice(None)])] weights = layer.get_weights() # Delete unused weights to obtain new_weights # Each deleted channel was connected to all of the channels # in layer; therefore, the mask must be repeated for each # channel. # `delete_mask`'s size: size(weights[0]) delete_mask = np.tile( inbound_masks[..., np.newaxis], list(k_size) + [1, weights[0].shape[-1]], ) new_shape = list(weights[0].shape) new_shape[-2] = -1 # Weights always have channels_last weights[0] = np.reshape(weights[0][delete_mask], new_shape) # Instantiate new layer with new_weights config = layer.get_config() config["weights"] = weights new_layer = type(layer).from_config(config) outbound_mask = None elif layer_class in ( "Cropping1D", "Cropping2D", "Cropping3D", "MaxPooling1D", "MaxPooling2D", "MaxPooling3D", "AveragePooling1D", "AveragePooling2D", "AveragePooling3D", ): index = [slice(None, x, None) for x in output_shape[1:]] if data_format == "channels_first": index[0] = slice(None) elif data_format == "channels_last": index[-1] = slice(None) else: raise ValueError("Invalid data format") outbound_mask = inbound_masks[tuple(index)] new_layer = layer elif layer_class in ( "UpSampling1D", "UpSampling2D", "UpSampling3D", "ZeroPadding1D", "ZeroPadding2D", "ZeroPadding3D", ): # Get slice of mask with all singleton dimensions except # channels dimension index = [slice(1)] * (len(input_shape) - 1) tile_shape = list(output_shape[1:]) if data_format == "channels_first": index[0] = slice(None) tile_shape[0] = 1 elif data_format == "channels_last": index[-1] = slice(None) tile_shape[-1] = 1 else: raise ValueError("Invalid data format") channels_vector = inbound_masks[tuple(index)] # Tile this slice to create the outbound mask outbound_mask = np.tile(channels_vector, tile_shape) new_layer = layer elif layer_class in ( "GlobalMaxPooling1D", "GlobalMaxPooling2D", "GlobalAveragePooling1D", "GlobalAveragePooling2D", ): # Get slice of mask with all singleton dimensions except # channels dimension index = [0] * (len(input_shape) - 1) if data_format == "channels_first": index[0] = slice(None) elif data_format == "channels_last": index[-1] = slice(None) else: raise ValueError("Invalid data format") channels_vector = inbound_masks[tuple(index)] # Tile this slice to create the outbound mask outbound_mask = channels_vector new_layer = layer elif layer_class in ( "Dropout", "Activation", "SpatialDropout1D", "SpatialDropout2D", "SpatialDropout3D", "ActivityRegularization", "Masking", "LeakyReLU", "ELU", "ThresholdedReLU", "GaussianNoise", "GaussianDropout", "AlphaDropout", "Rename", ) or (layer_class == "TensorFlowOpLayer" and layer.node_def.op == "ResizeBilinear"): # Pass-through layers outbound_mask = inbound_masks new_layer = layer elif layer_class == "Reshape": outbound_mask = np.reshape(inbound_masks, layer.target_shape) new_layer = layer elif layer_class == "Permute": outbound_mask = np.transpose(inbound_masks, [x - 1 for x in layer.dims]) new_layer = layer elif layer_class == "RepeatVector": outbound_mask = np.repeat(np.expand_dims(inbound_masks, 0), layer.n, axis=0) new_layer = layer elif layer_class == "Embedding": # Embedding will always be the first layer so it doesn't need # to consider the inbound_delete_mask if inbound_masks is not None: raise ValueError("Channels cannot be deleted bedore Embedding " "layers because they change the number of " "channels.") outbound_mask = None new_layer = layer elif layer_class in ("Add", "Multiply", "Average", "Maximum"): # The inputs must be the same size if not utils.all_equal(inbound_masks): ValueError( "{0} layers must have the same size inputs. All " "inbound nodes must have the same channels deleted".format( layer_class)) outbound_mask = inbound_masks[1] new_layer = layer elif layer_class == "Concatenate": axis = layer.axis if layer.axis < 0: axis = axis % len(layer.input_shape[0]) # Below: axis=axis-1 because the mask excludes the batch dimension outbound_mask = np.concatenate(inbound_masks, axis=axis - 1) new_layer = layer elif layer_class in ("SimpleRNN", "GRU", "LSTM"): if np.all(inbound_masks): new_layer = layer else: weights = layer.get_weights() weights[0] = weights[0][np.where(inbound_masks[0, :])[0], :] config = layer.get_config() config["weights"] = weights new_layer = type(layer).from_config(config) outbound_mask = None elif layer_class == "BatchNormalization": outbound_mask = inbound_masks # Get slice of mask with all singleton dimensions except # channels dimension index = [0] * (len(input_shape)) index[layer.axis] = slice(None) index = index[1:] # TODO: Maybe use channel indices everywhere instead of masks? channel_indices = np.where(inbound_masks[tuple(index)] == False)[0] weights = [ np.delete(w, channel_indices, axis=-1) for w in layer.get_weights() ] new_layer = BatchNormalization.from_config(layer.get_config()) new_input_shape = list(input_shape) new_input_shape[new_layer.axis] -= len(channel_indices) new_layer.build(new_input_shape) new_layer.set_weights(weights) else: # Not implemented: # - Lambda # - SeparableConv2D # - Conv2DTranspose # - LocallyConnected1D # - LocallyConnected2D # - TimeDistributed # - Bidirectional # - Dot # - PReLU # Warning/error needed for Reshape if channels axis is split raise ValueError('"{0}" layers are currently ' "unsupported.".format(layer_class)) if len(get_inbound_nodes(layer)) > 1 and new_layer != layer: self._replace_layers_map[layer] = (new_layer, outbound_mask) return new_layer, outbound_mask
def _rebuild_rec(node): """Rebuild the graph up to `node` recursively. Args: node(Node): Node to rebuild up to. Returns: (tuple) containing : The output tensor of the rebuilt `node` The output mask of the rebuilt `node` """ # TODO: What happens if nodes have multiple output tensors? # Does that ever happen? layer = node.outbound_layer logger.debug("getting inputs for: {0}".format(layer.name)) node_output = utils.single_element(node.output_tensors) # First check for conditions to bottom out the recursion # Check for replaced tensors before any other checks: # these are created by the surgery methods. if node_output.name in self._replace_tensors.keys(): logger.debug( "bottomed out at replaced output: {0}".format(node_output)) output, output_mask = self._replace_tensors[node_output.name] return output, output_mask # Next check if the current node has already been rebuilt. elif node in self._finished_nodes.keys(): logger.debug("reached finished node: {0}".format(node)) return self._finished_nodes[node] # Next check if one of the graph_inputs has been reached. elif node_output.name in names(graph_inputs): logger.debug("bottomed out at a model input") output_mask = graph_input_masks[graph_inputs.index( node_output)] return node_output, output_mask # Otherwise recursively call this method on the inbound nodes. else: inbound_nodes = utils.get_node_inbound_nodes(node) logger.debug("inbound_layers: {0}".format( [node.outbound_layer.name for node in inbound_nodes])) # Recursively rebuild the model up to `node`s inbound nodes to # obtain its inputs and input masks inputs, input_masks = zip( *[_rebuild_rec(n) for n in inbound_nodes]) if all(i is None for i in inputs): output = None output_mask = np.zeros(node.output_shapes[0][1:], dtype=bool) elif any(i is None for i in inputs): if node.outbound_layer.__class__.__name__ != "Concatenate": TypeError( "Inputs can only be missing for concatenate layers." ) # remove Nones from inputs list inputs = [i for i in inputs if i is not None] new_layer, output_mask = self._apply_delete_mask( node, input_masks) if len(inputs) == 1: output = utils.single_element(list(inputs)) else: output = new_layer(utils.single_element(list(inputs))) else: new_layer, output_mask = self._apply_delete_mask( node, input_masks) output = new_layer(utils.single_element(list(inputs))) # Record that this node has been rebuild self._finished_nodes[node] = (output, output_mask) logger.debug("layer complete: {0}".format(layer.name)) return output, output_mask
def _rebuild_rec(node): """Rebuild the graph up to `node` recursively. Args: node(Node): Node to rebuild up to. Returns: (tuple) containing : The output tensor of the rebuilt `node` The output mask of the rebuilt `node` """ # TODO: What happens if nodes have multiple output tensors? # Does that ever happen? layer = node.outbound_layer logging.debug('getting inputs for: {0}'.format(layer.name)) node_output = utils.single_element(node.output_tensors) # First check for conditions to bottom out the recursion # Check for replaced tensors before any other checks: # these are created by the surgery methods. if node_output in self._replace_tensors.keys(): logging.debug( 'bottomed out at replaced output: {0}'.format(node_output)) output, output_mask = self._replace_tensors[node_output] return output, output_mask # Next check if the current node has already been rebuilt. elif node in self._finished_nodes.keys(): logging.debug('reached finished node: {0}'.format(node)) return self._finished_nodes[node] # Next check if one of the graph_inputs has been reached. mask_map = TensorDict() for input, mask in zip(graph_inputs, graph_input_masks): mask_map[input] = mask try: output_mask = mask_map[node_output] logging.debug('bottomed out at a model input') return node_output, output_mask except KeyError: # Otherwise recursively call this method on the inbound nodes. inbound_nodes = node_utils.parent_nodes(node) logging.debug('inbound_layers: {0}'.format( [node.outbound_layer.name for node in inbound_nodes])) # Recursively rebuild the model up to `node`s inbound nodes to # obtain its inputs and input masks inputs, input_masks = zip( *[_rebuild_rec(n) for n in inbound_nodes]) if all(i is None for i in inputs): output = None try: assert len(node.output_tensors) <= 1 except AssertionError as e: raise e except: pass output_mask = np.zeros(node.output_tensors.shape[1:], dtype=bool) elif any(i is None for i in inputs): if node.outbound_layer.__class__.__name__ != 'Concatenate': TypeError( 'Inputs can only be missing for concatenate layers.' ) # remove Nones from inputs list inputs = [i for i in inputs if i is not None] new_layer, output_mask = self._apply_delete_mask( node, input_masks) if len(inputs) == 1: output = utils.single_element(list(inputs)) else: output = new_layer(utils.single_element(list(inputs))) else: new_layer, output_mask = self._apply_delete_mask( node, input_masks) output = new_layer(utils.single_element(list(inputs))) # Record that this node has been rebuild self._finished_nodes[node] = (output, output_mask) logging.debug('layer complete: {0}'.format(layer.name)) return output, output_mask
def get_output_sum(model, layer, x_val, node_indices=None, steps=None): """ Args: model: A Keras model. layer: The layer whose channels will be evaluated for pruning. x_val: The input of the validation set. This will be used to calculate the activations of the layer of interest. node_indices(list[int]): (optional) A list of node indices. steps: number of steps for a generator Returns: total: total output given a dataset from each kernel """ if isinstance(layer, str): layer = model.get_layer(name=layer) # Check that layer is in the model if layer not in model.layers: raise ValueError('layer is not a valid Layer in model.') layer_node_indices = utils.find_nodes_in_model(model, layer) # If no nodes are specified, all of the layer's inbound nodes which are # in model are selected. if not node_indices: node_indices = layer_node_indices # Check for duplicate node indices elif len(node_indices) != len(set(node_indices)): raise ValueError('`node_indices` contains duplicate values.') # Check that all of the selected nodes are in the layer elif not set(node_indices).issubset(layer_node_indices): raise ValueError('One or more nodes specified by `layer` and ' '`node_indices` are not in `model`.') data_format = getattr(layer, 'data_format', 'channels_last') # Perform the forward pass and get the activations of the layer. total_sum = None for node_index in node_indices: act_layer, act_index = utils.find_activation_layer(layer, node_index) # Get activations if isinstance(x_val, types.GeneratorType): # temp_model = Model(model.inputs, act_layer.get_output_at(act_index)) temp_model = Model(model.inputs, layer.get_output_at(node_index)) a = temp_model.predict_generator_intermediate(x_val, steps=steps) else: get_activations = k.function( [utils.single_element(model.inputs), k.learning_phase()], [act_layer.get_output_at(act_index)]) a = get_activations([x_val, 0])[0] # Ensure that the channels axis is last if data_format == 'channels_first': a = np.swapaxes(a, 1, -1) numAxes = len(a.shape) - 1 total = np.sum(a, axis=numAxes) for n in range(numAxes - 1, -1, -1): total = np.sum(total, axis=n) # previous - for time distributed convolution # a = np.abs(a) # total = np.sum(a, axis=2) # total = np.sum(total, axis=1) # total = np.sum(total, axis=0) if total_sum is None: total_sum = total else: total_sum += total return total_sum