def setUp(self): self.lens_dist = kernel.dNdzMagLim(z_min=0.0, z_max=2.0, a=2, z0=0.3, b=2) self.source_dist = kernel.dNdzGaussian(z_min=0.0, z_max=2.0, z0=1.0, sigma_z=0.2) self.z_array = numpy.linspace(0.0, 2.0, 4) self.lens_dist_list = [0.0, 0.00318532, 0.0, 0.0] self.source_dist_list = [3.72665317e-06, 0.24935220, 0.24935220, 3.72665317e-06]
def correlation_unit_test(): import correlation import hod import kernel print "\n******************************" print "* *" print "* Testing Correlation Module *" print "* *" print "******************************\n" ### Definining a correlation object requires first two window functions ### (these could in principle be the same window function), theta bounds to ### compute the correlation over, and optionaly and HOD object and a ### specification as to which power spectrum to use. Note: the different ### correlation classes have approprate default values. ### As in kernel_unit_test create galaxy distributions lens_dist = kernel.dNdzMagLim(0.0, 2.0, 2, 0.3, 2) source_dist = kernel.dNdzGaussian(0.0, 2.0, 1.0, 0.2) ### create appropreate window objects lens_window = kernel.WindowFunctionGalaxy(lens_dist) source_window = kernel.WindowFunctionConvergence(source_dist) ### define an hod (optional but needed in order to use power_gm or power_gg) zheng = hod.HODZheng(10**13.0, 0.15, 10**13.0, 10**14.0, 1.0) ### Define the correlation objects. Note that each of these correlations ### is computed using the nonlinear dark matter power spectrum, power_mm. ### other options are linear_power which computes the correlation for the ### linear spectrum only, power_gm which is the galaxy-matter cross spectrum ### and power_gg which is the galaxy-galaxy power spectrum. ### Here we define the correlation function of galaxy clustering, note that ### it takes only one window function as the second is assumed identical theta_array = numpy.logspace(-3, 0, 5) auto = correlation.AutoCorrelation(theta_min=0.001 * degToRad, theta_max=1.0 * degToRad, window_function_galaxy=lens_window, input_hod=zheng, powSpec='power_mm') print "Auto Correlation: (theta [deg], wtheta)" for theta in theta_array: print "\t", (theta, auto.correlation(theta * degToRad)) ### Define the correlation for galaxy-galaxy magnification. Note it takes ### and WindowFunctionGalaxy object and a WindowFunctionConvergence Object mag = correlation.MagCorrelation(0.001 * degToRad, 1.0 * degToRad, lens_window, source_window, input_hod=zheng, powSpec='power_mm') print "Convergence Correlation: (theta [deg], wtheta)" for theta in theta_array: print "\t", (theta, mag.correlation(theta * degToRad)) print ""
def setUp(self): lens_dist = kernel.dNdzMagLim(z_min=0.0, z_max=2.0, a=1, z0=0.3, b=1) source_dist = kernel.dNdzGaussian(z_min=0.0, z_max=2.0, z0=1.0, sigma_z=0.2) cosmo = cosmology.MultiEpoch(0.0, 5.0, cosmo_dict=c_dict) self.lens_window = kernel.WindowFunctionGalaxy( lens_dist, cosmo_multi_epoch=cosmo) self.source_window = kernel.WindowFunctionConvergence( source_dist, cosmo_multi_epoch=cosmo) self.z_array = numpy.linspace(0.0, 2.0, 4)
def correlation_unit_test(): import correlation import hod import kernel print "\n******************************" print "* *" print "* Testing Correlation Module *" print "* *" print "******************************\n" ### Definining a correlation object requires first two window functions ### (these could in principle be the same window function), theta bounds to ### compute the correlation over, and optionaly and HOD object and a ### specification as to which power spectrum to use. Note: the different ### correlation classes have approprate default values. ### As in kernel_unit_test create galaxy distributions lens_dist = kernel.dNdzMagLim(0.0, 2.0, 2, 0.3, 2) source_dist = kernel.dNdzGaussian(0.0, 2.0, 1.0, 0.2) ### create appropreate window objects lens_window = kernel.WindowFunctionGalaxy(lens_dist) source_window = kernel.WindowFunctionConvergence(source_dist) ### define an hod (optional but needed in order to use power_gm or power_gg) zheng = hod.HODZheng(10**13.0, 0.15, 10**13.0, 10**14.0, 1.0) ### Define the correlation objects. Note that each of these correlations ### is computed using the nonlinear dark matter power spectrum, power_mm. ### other options are linear_power which computes the correlation for the ### linear spectrum only, power_gm which is the galaxy-matter cross spectrum ### and power_gg which is the galaxy-galaxy power spectrum. ### Here we define the correlation function of galaxy clustering, note that ### it takes only one window function as the second is assumed identical theta_array = numpy.logspace(-3, 0, 5) auto = correlation.AutoCorrelation(theta_min=0.001*degToRad, theta_max=1.0*degToRad, window_function_galaxy=lens_window, input_hod=zheng, powSpec='power_mm') print "Auto Correlation: (theta [deg], wtheta)" for theta in theta_array: print "\t",(theta, auto.correlation(theta*degToRad)) ### Define the correlation for galaxy-galaxy magnification. Note it takes ### and WindowFunctionGalaxy object and a WindowFunctionConvergence Object mag = correlation.MagCorrelation(0.001*degToRad, 1.0*degToRad, lens_window, source_window, input_hod=zheng, powSpec='power_mm') print "Convergence Correlation: (theta [deg], wtheta)" for theta in theta_array: print "\t",(theta, mag.correlation(theta*degToRad)) print ""
def setUp(self): cosmo = cosmology.MultiEpoch(0.0, 5.0, cosmo_dict=c_dict) lens_dist = kernel.dNdzMagLim(z_min=0.0, z_max=2.0, a=2, z0=0.3, b=2) source_dist = kernel.dNdzGaussian(z_min=0.0, z_max=2.0, z0=1.0, sigma_z=0.2) lens_window = kernel.WindowFunctionGalaxy( lens_dist, cosmo_multi_epoch=cosmo) source_window = kernel.WindowFunctionConvergence( source_dist, cosmo_multi_epoch=cosmo) self.kern = kernel.Kernel(0.001*0.001*degToRad, 1.0*100.0*degToRad, window_function_a=lens_window, window_function_b=source_window, cosmo_multi_epoch=cosmo) self.ln_ktheta_array = numpy.linspace(-15, -1, 4)
def setUp(self): cosmo_multi = cosmology.MultiEpoch(0.0, 5.0, cosmo_dict=c_dict) lens_dist = kernel.dNdzMagLim(z_min=0.0, z_max=2.0, a=2, z0=0.3, b=2) source_dist = kernel.dNdzGaussian(z_min=0.0, z_max=2.0, z0=1.0, sigma_z=0.2) lens_window = kernel.WindowFunctionGalaxy( lens_dist, cosmo_multi_epoch=cosmo_multi) source_window = kernel.WindowFunctionConvergence( source_dist, cosmo_multi_epoch=cosmo_multi) kern = kernel.Kernel(0.001*0.001*deg_to_rad, 1.0*100.0*deg_to_rad, window_function_a=lens_window, window_function_b=source_window, cosmo_multi_epoch=cosmo_multi) zheng = hod.HODZheng(hod_dict) cosmo_single = cosmology.SingleEpoch(0.0, cosmo_dict=c_dict) h = halo.Halo(input_hod=zheng, cosmo_single_epoch=cosmo_single) self.corr = correlation.Correlation(0.001, 1.0, input_kernel=kern, input_halo=h, power_spec='power_mm') self.theta_array = numpy.logspace(-3, 0, 4)*deg_to_rad
### Initialize the halo object with the mass function and single epoch ### cosmology implementation is from Seljak2000. halo_model = halo.Halo(redshift=0.0, input_hod=sdss_hod, cosmo_single_epoch=cosmo_single) ### From this point we have fully defined our cosmology and halo model. ### The next step is defining the redshift distributions and appropriate ### window functions. ### Below we define our foreground lenses and background source distributions ### needed for projecting our power spectrum from halo onto the sky. We use ### the functional form of a magnitude limited sample for the lens and for the ### sources we use a Gaussian with mean z=1.0. Other options could be used here, ### see kernel.py for other implemented distributions. lens_dist = kernel.dNdzMagLim(0.0, 2.0, 2.0, 0.3, 2.0) source_dist = kernel.dNdzGaussian(0.0, 2.0, 1.0, 0.2) ### Now we need to create the appropriate window functions that will allow us ### to project the power spectrum from halo. Currently these come in two ### varieties. The first is WindowFunctionGalaxy which defines the dn/dchi ### distribution of galaxies. If one is interested in the clustering of two(one) ### galaxy populations this is correlation should be used. The second is ### WindowFunctionConvergence which defines the lensing kernel weighted ### distribution. Cosmic shear and magnification studies should use 2 of ### these. For the galaxy-galaxy magnification which we are trying to compute we ### need both a galaxy window function (for the lenses) and a convergence ### window function (for the sources). lens_window = kernel.WindowFunctionGalaxy(lens_dist, cosmo_multi) source_window = kernel.WindowFunctionConvergence(source_dist, cosmo_multi) lens_window.write('test_lens_window.ascii')
def kernel_unit_test(): import cosmology import kernel print "\n*************************" print "* *" print "* Testing kernel Module *" print "* *" print "*************************\n" print "Testing dNdz" print "*************************" ### To define a Kernel object we need several things first. We need redshift ### distributions as well as the corresponding window functions. ### initilized to galaxy redshift distributions one as a magnitude limited ### sample, the other a Guassian with mean z=1.0 lens_dist = kernel.dNdzMagLim(z_min=0.0, z_max=2.0, a=2, z0=0.3, b=2) source_dist = kernel.dNdzGaussian(z_min=0.0, z_max=2.0, z0=1.0, sigma_z=0.2) ### normalize the distributions and create PDFs lens_dist.normalize() source_dist.normalize() z_array = numpy.linspace(0.0, 2.0, 5) print "Lens dNdz: (z, p(z)dz)" for z in z_array: print "\t", (z, lens_dist.dndz(z)) print "Source dNdz: (z, p(z)dz)" for z in z_array: print "\t", (z, source_dist.dndz(z)) print "" print "Testing WindowFunction" print "*************************" cosmo = cosmology.MultiEpoch(0.0, 2.0) ### using the distributions defined above compute the distance weighted ### window functions for use in projecting a powerspectrum ### Define a galaxy window function chi_array = cosmo.comoving_distance(z_array) lens_window = kernel.WindowFunctionGalaxy(redshift_dist=lens_dist) print "Lens Window: (chi [Mpc/h], window value [h/Mpc])" for chi in chi_array: print "\t", (chi, lens_window.window_function(chi)) ### Backup write command if more information is needed # lens_window.write('test_galaxy_window_function.ascii') ### Define a lensed population of galaxies source_window = kernel.WindowFunctionConvergence(redshift_dist=source_dist) print "Source Window: (chi [Mpc/h], window value [h/Mpc])" for chi in chi_array: print "\t", (chi, source_window.window_function(chi)) ### Backup write command if more information is needed # source_window.write('test_convergence_window_function.ascii') print "Testing Kernel" print "*************************" ### Initialize the kernel objects for projecting a power spectrum in z space ### Initilize the kernel for galaxy clustering ln_ktheta_array = numpy.linspace(-15, -1, 5) k_Auto = kernel.Kernel(ktheta_min=0.001 * degToRad * 0.001, ktheta_max=1.0 * degToRad * 100.0, window_function_a=lens_window, window_function_b=lens_window) print "Auto Kernel: (k*theta [h/Mpc*Radians], kernel value [(h/Mpc)^2])" for ln_ktheta in ln_ktheta_array: print "\t", (numpy.exp(ln_ktheta), k_Auto.kernel(ln_ktheta)) ### Backup write command if more information is needed # k_Auto.write('test_clustering_kernel.ascii') ### Kernel computing lensing convergence k_Con = kernel.Kernel(0.001 * degToRad * 0.001, 1.0 * degToRad * 100.0, lens_window, source_window) print( "Convergence Kernel: (k*theta [h/Mpc*Radians], " "kernel value [(h/Mpc)^2])") for ln_ktheta in ln_ktheta_array: print "\t", (numpy.exp(ln_ktheta), k_Con.kernel(ln_ktheta)) print "" ### Backup write command if more information is needed # k_Con.write("test_convergence_kernel.ascii") ### Print out the redshifts for which the kernel is maximaly sensitive print "Peak Sensitivity at Redshifts:", k_Auto.z_bar, k_Con.z_bar
halo_model = halo.Halo(redshift=0.0, input_hod=sdss_hod, cosmo_single_epoch=cosmo_single, mass_func=mass, extrapolate=True) ### From this point we have fully defined our cosmology and halo model. ### The next step is defining the redshift distributions and appropriate ### window functions. ### Below we define our foreground lenses and background source distributions ### needed for projecting our power spectrum from halo onto the sky. We use ### the functional form of a magnitude limited sample for the lens and for the ### sources we use a Gaussian with mean z=1.0. Other options could be used here, ### see kernel.py for other implemented distributions. lens_dist = kernel.dNdzMagLim(0.001, 5.0, 2.0, 0.3, 2.0) z_bar = 1.0 dz = 0.001 source_dist = kernel.dNdzGaussian(z_bar - 5.0*dz, z_bar + 5.0*dz, z_bar, dz) ### Now we need to create the appropriate window functions that will allow us ### to project the power spectrum from halo. Currently these come in two ### varieties. The first is WindowFunctionGalaxy which defines the dn/dchi ### distribution of galaxies. If one is interested in the clustering of two(one) ### galaxy populations this is correlation should be used. The second is ### WindowFunctionConvergence which defines the lensing kernel weighted ### distribution. Cosmic shear and magnification studies should use 2 of ### these. For the galaxy-galaxy magnification which we are trying to compute we ### need both a galaxy window function (for the lenses) and a convergence ### window function (for the sources). lens_window = kernel.WindowFunctionGalaxy(lens_dist, cosmo_multi)
def kernel_unit_test(): import cosmology import kernel print "\n*************************" print "* *" print "* Testing kernel Module *" print "* *" print "*************************\n" print "Testing dNdz" print "*************************" ### To define a Kernel object we need several things first. We need redshift ### distributions as well as the corresponding window functions. ### initilized to galaxy redshift distributions one as a magnitude limited ### sample, the other a Guassian with mean z=1.0 lens_dist = kernel.dNdzMagLim(z_min=0.0, z_max=2.0, a=2, z0=0.3, b=2) source_dist = kernel.dNdzGaussian(z_min=0.0, z_max=2.0, z0=1.0, sigma_z=0.2) ### normalize the distributions and create PDFs lens_dist.normalize() source_dist.normalize() z_array = numpy.linspace(0.0, 2.0, 5) print "Lens dNdz: (z, p(z)dz)" for z in z_array: print "\t",(z, lens_dist.dndz(z)) print "Source dNdz: (z, p(z)dz)" for z in z_array: print "\t",(z, source_dist.dndz(z)) print "" print "Testing WindowFunction" print "*************************" cosmo = cosmology.MultiEpoch(0.0, 2.0) ### using the distributions defined above compute the distance weighted ### window functions for use in projecting a powerspectrum ### Define a galaxy window function chi_array = cosmo.comoving_distance(z_array) lens_window = kernel.WindowFunctionGalaxy(redshift_dist=lens_dist) print "Lens Window: (chi [Mpc/h], window value [h/Mpc])" for chi in chi_array: print "\t",(chi, lens_window.window_function(chi)) ### Backup write command if more information is needed # lens_window.write('test_galaxy_window_function.ascii') ### Define a lensed population of galaxies source_window = kernel.WindowFunctionConvergence(redshift_dist=source_dist) print "Source Window: (chi [Mpc/h], window value [h/Mpc])" for chi in chi_array: print "\t",(chi, source_window.window_function(chi)) ### Backup write command if more information is needed # source_window.write('test_convergence_window_function.ascii') print "Testing Kernel" print "*************************" ### Initialize the kernel objects for projecting a power spectrum in z space ### Initilize the kernel for galaxy clustering ln_ktheta_array = numpy.linspace(-15, -1, 5) k_Auto = kernel.Kernel(ktheta_min=0.001*degToRad*0.001, ktheta_max=1.0*degToRad*100.0, window_function_a=lens_window, window_function_b=lens_window) print "Auto Kernel: (k*theta [h/Mpc*Radians], kernel value [(h/Mpc)^2])" for ln_ktheta in ln_ktheta_array: print "\t",(numpy.exp(ln_ktheta), k_Auto.kernel(ln_ktheta)) ### Backup write command if more information is needed # k_Auto.write('test_clustering_kernel.ascii') ### Kernel computing lensing convergence k_Con = kernel.Kernel(0.001*degToRad*0.001, 1.0*degToRad*100.0, lens_window, source_window) print ("Convergence Kernel: (k*theta [h/Mpc*Radians], " "kernel value [(h/Mpc)^2])") for ln_ktheta in ln_ktheta_array: print "\t",(numpy.exp(ln_ktheta), k_Con.kernel(ln_ktheta)) print "" ### Backup write command if more information is needed # k_Con.write("test_convergence_kernel.ascii") ### Print out the redshifts for which the kernel is maximaly sensitive print "Peak Sensitivity at Redshifts:", k_Auto.z_bar, k_Con.z_bar