Example #1
0
def main(argv):
    args = argument_handler.train_arg_parser(argv)
    args.lr, args.weight_decay = default_configs.optimisation_params(
        'classification', args)
    # FIXME: cant take more than one GPU
    args.gpus = args.gpus[0]

    if 'random_' in args.dataset:
        args.dataset = args.dataset.replace('random_', '')
        args.random_labels = True
    else:
        args.random_labels = False

    # TODO: why load weights is False?
    args.out_dir = prepare_training.prepare_output_directories(
        dataset_name=args.dataset,
        network_name=args.network_name,
        optimiser='sgd',
        load_weights=False,
        experiment_name=args.experiment_name,
        framework='pytorch')

    if args.seed is not None:
        random.seed(args.seed)
        torch.manual_seed(args.seed)
        cudnn.deterministic = True
        warnings.warn(
            'You have chosen to seed training. '
            'This will turn on the CUDNN deterministic setting, '
            'which can slow down your training considerably! '
            'You may see unexpected behavior when restarting from checkpoints.'
        )

    if args.gpus is not None:
        warnings.warn(
            'You have chosen a specific GPU. This will completely disable data parallelism.'
        )

    if args.dist_url == "env://" and args.world_size == -1:
        args.world_size = int(os.environ["WORLD_SIZE"])

    args.distributed = args.world_size > 1 or args.multiprocessing_distributed

    json_file_name = os.path.join(args.out_dir, 'args.json')
    with open(json_file_name, 'w') as fp:
        json.dump(dict(args._get_kwargs()), fp, sort_keys=True, indent=4)

    ngpus_per_node = torch.cuda.device_count()
    if args.multiprocessing_distributed:
        # Since we have ngpus_per_node processes per node, the total world_size
        # needs to be adjusted accordingly
        args.world_size = ngpus_per_node * args.world_size
        # Use torch.multiprocessing.spawn to launch distributed processes: the
        # main_worker process function
        mp.spawn(main_worker,
                 nprocs=ngpus_per_node,
                 args=(ngpus_per_node, args))
    else:
        # Simply call main_worker function
        main_worker(ngpus_per_node, args)
Example #2
0
def main(argv):
    args = argument_handler.train_arg_parser(argv, extra_args_fun)
    if args.prediction:
        from kernelphysiology.dl.utils import augmentation
        from kernelphysiology.dl.utils import arguments as ah
        args.manipulation, args.parameters = ah.create_manipulation_list(
            args.manipulation, args.parameters,
            augmentation.get_testing_augmentations())

    if args.lr is None:
        args.lr = 0.1
    if args.weight_decay is None:
        args.weight_decay = 1e-4
    # FIXME: cant take more than one GPU
    args.gpus = args.gpus[0]

    # TODO: why load weights is False?
    args.out_dir = prepare_training.prepare_output_directories(
        dataset_name=args.dataset,
        network_name=args.network_name,
        optimiser='sgd',
        load_weights=False,
        experiment_name=args.experiment_name,
        framework='pytorch')

    if args.seed is not None:
        random.seed(args.seed)
        torch.manual_seed(args.seed)
        cudnn.deterministic = True
        warnings.warn(
            'You have chosen to seed training. '
            'This will turn on the CUDNN deterministic setting, '
            'which can slow down your training considerably! '
            'You may see unexpected behavior when restarting from checkpoints.'
        )

    if args.gpus is not None:
        warnings.warn('You have chosen a specific GPU. This will completely '
                      'disable data parallelism.')

    if args.dist_url == "env://" and args.world_size == -1:
        args.world_size = int(os.environ["WORLD_SIZE"])

    args.distributed = args.world_size > 1 or args.multiprocessing_distributed

    ngpus_per_node = torch.cuda.device_count()
    if args.multiprocessing_distributed:
        # Since we have ngpus_per_node processes per node, the total world_size
        # needs to be adjusted accordingly
        args.world_size = ngpus_per_node * args.world_size
        # Use torch.multiprocessing.spawn to launch distributed processes: the
        # main_worker process function
        mp.spawn(main_worker,
                 nprocs=ngpus_per_node,
                 args=(ngpus_per_node, args))
    else:
        # Simply call main_worker function
        main_worker(ngpus_per_node, args)
Example #3
0
def main(argv):
    args = argument_handler.train_arg_parser(argv, extra_args_fun)
    args.lr, args.weight_decay = default_configs.optimisation_params(
        'classification', args)
    args.num_classes = 2
    # FIXME: cant take more than one GPU
    args.gpus = args.gpus[0]

    if args.seed is not None:
        random.seed(args.seed)
        torch.manual_seed(args.seed)
        cudnn.deterministic = True
        warnings.warn(
            'You have chosen to seed training. '
            'This will turn on the CUDNN deterministic setting, '
            'which can slow down your training considerably! '
            'You may see unexpected behavior when restarting from checkpoints.'
        )

    if args.gpus is not None:
        warnings.warn('You have chosen a specific GPU. This will completely '
                      'disable data parallelism.')

    if args.dist_url == "env://" and args.world_size == -1:
        args.world_size = int(os.environ["WORLD_SIZE"])

    args.distributed = args.world_size > 1 or args.multiprocessing_distributed

    ngpus_per_node = torch.cuda.device_count()
    if args.multiprocessing_distributed:
        # Since we have ngpus_per_node processes per node, the total world_size
        # needs to be adjusted accordingly
        args.world_size = ngpus_per_node * args.world_size
        # Use torch.multiprocessing.spawn to launch distributed processes: the
        # main_worker process function
        mp.spawn(main_worker,
                 nprocs=ngpus_per_node,
                 args=(ngpus_per_node, args))
    else:
        # Simply call main_worker function
        main_worker(ngpus_per_node, args)