def main():
    start_time = time.time()
    config = load_yaml(os.path.join(get_project_root(), 'experiments/drake_pusher_slider/env_config.yaml'))
    config['dataset']['num_episodes'] = 1000 # half for train, half for valid

    set_seed(500) # just randomly chosen

    num_episodes = config['dataset']['num_episodes']
    DATASET_NAME = "box_push_%d" %(num_episodes)
    OUTPUT_DIR = os.path.join(get_data_ssd_root(), 'dataset', DATASET_NAME)

    if not os.path.exists(OUTPUT_DIR):
        os.makedirs(OUTPUT_DIR)
    collect_episodes(
        config,
        output_dir=OUTPUT_DIR,
        visualize=False,
        debug=False)

    elapsed = time.time() - start_time
    print("Generating and saving dataset to disk took %d seconds" % (int(elapsed)))
Example #2
0
def main():
    start_time = time.time()
    config = load_yaml(
        os.path.join(get_project_root(),
                     'experiments/exp_20_mugs/config.yaml'))

    config['dataset']['num_episodes'] = 10

    set_seed(500)  # just randomly chosen

    DATASET_NAME = "mugs_%d" % (config['dataset']['num_episodes'])
    OUTPUT_DIR = os.path.join(get_data_root(), 'sandbox', DATASET_NAME)
    print("OUTPUT_DIR:", OUTPUT_DIR)

    collect_episodes(config,
                     output_dir=OUTPUT_DIR,
                     visualize=False,
                     debug=False)

    elapsed = time.time() - start_time
    print("Generating and saving dataset to disk took %d seconds" %
          (int(elapsed)))
def main():
    start_time = time.time()
    config = load_yaml(
        os.path.join(get_project_root(),
                     'experiments/exp_18_box_on_side/config.yaml'))
    # config['dataset']['num_episodes'] = 500  # half for train, half for valid
    config['dataset']['num_episodes'] = 600  # half for train, half for valid

    set_seed(500)  # just randomly chosen

    DATASET_NAME = "dps_box_on_side_%d" % (config['dataset']['num_episodes'])
    OUTPUT_DIR = os.path.join(get_data_root(), "dev/experiments/18/data",
                              DATASET_NAME)
    print("OUTPUT_DIR:", OUTPUT_DIR)

    collect_episodes(config,
                     output_dir=OUTPUT_DIR,
                     visualize=False,
                     debug=False)

    elapsed = time.time() - start_time
    print("Generating and saving dataset to disk took %d seconds" %
          (int(elapsed)))
def evaluate_mpc(
    model_dy,  # dynamics model
    env,  # the environment
    episode,  # OnlineEpisodeReader
    mpc_input_builder,  # DynamicsModelInputBuilder
    planner,  # RandomShooting planner
    eval_indices=None,
    goal_func=None,  # function that gets goal from observation
    config=None,
    wait_for_user_input=False,
    save_dir=None,
    model_name="",
    experiment_name="",
    generate_initial_condition_func=None,
    # (optional) function to generate initial condition, takes episode length N as parameter
):
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)

    # must specify initial condition distribution
    assert generate_initial_condition_func is not None

    save_yaml(config, os.path.join(save_dir, 'config.yaml'))
    writer = SummaryWriter(log_dir=save_dir)

    pandas_data_list = []
    for episode_length in config['eval']['episode_length']:
        counter = 0
        seed = 0
        while counter < config['eval']['num_episodes']:

            start_time = time.time()
            seed += 1
            set_seed(seed)  # make it repeatable
            # initial_cond = generate_initial_condition(config, N=episode_length)
            initial_cond = generate_initial_condition_func(N=episode_length)

            env.set_initial_condition_from_dict(initial_cond)

            action_sequence_np = torch_utils.cast_to_numpy(
                initial_cond['action_sequence'])
            episode_data = mpc_single_episode(
                model_dy=model_dy,
                env=env,
                action_sequence=action_sequence_np,
                action_zero=np.zeros(2),
                episode=episode,
                mpc_input_builder=mpc_input_builder,
                planner=planner,
                eval_indices=eval_indices,
                goal_func=goal_func,
                config=config,
                wait_for_user_input=wait_for_user_input,
            )

            # continue if invalid
            if not episode_data['valid']:
                print("invalid episode, skipping")
                continue

            pose_error = compute_pose_error(
                obs=episode_data['obs_mpc_final'],
                obs_goal=episode_data['obs_goal'],
            )

            object_delta = compute_pose_error(
                obs=episode_data['obs_init'],
                obs_goal=episode_data['obs_goal'])

            print("object_delta\n", object_delta)

            if wait_for_user_input:
                print("pose_error\n", pose_error)

            pandas_data = {
                'episode_length': episode_length,
                'seed': counter,
                'model_name': model_name,
                'experiment_name': experiment_name,
                'object_pos_delta': object_delta['position_error'],
                'object_angle_delta': object_delta['angle_error'],
                'object_angle_delta_degrees':
                object_delta['angle_error_degrees'],
            }

            pandas_data.update(pose_error)
            pandas_data_list.append(pandas_data)

            # log to tensorboard
            for key, val in pose_error.items():
                plot_name = "%s/episode_len_%d" % (key, episode_length)
                writer.add_scalar(plot_name, val, counter)

            writer.flush()

            print("episode [%d/%d], episode_length %d, duration %.2f" %
                  (counter, config['eval']['num_episodes'], episode_length,
                   time.time() - start_time))
            counter += 1

        df_tmp = pd.DataFrame(pandas_data_list)
        keys = ["angle_error_degrees", "position_error"]
        for key in keys:
            for i in range(10):
                mean = df_tmp[key][df_tmp.episode_length ==
                                   episode_length].mean()
                median = df_tmp[key][df_tmp.episode_length ==
                                     episode_length].median()

                plot_name_mean = "mean/%s/episode_len_%d" % (key,
                                                             episode_length)
                writer.add_scalar(plot_name_mean, mean, i)

                plot_name_median = "median/%s/episode_len_%d" % (
                    key, episode_length)
                writer.add_scalar(plot_name_median, median, i)

    # save some data
    df = pd.DataFrame(pandas_data_list)
    df.to_csv(os.path.join(save_dir, "data.csv"))
Example #5
0
def eval_dynamics(
    config,
    eval_dir,  # str: directory to save output
    multi_episode_dict=None,
    n_rollout_list=None,
    model_dy=None,  # should already be in eval mode
    phase_list=None,  # typically it's
    num_epochs=10,
):

    assert n_rollout_list is not None
    assert model_dy is not None
    assert multi_episode_dict is not None

    if phase_list is None:
        phase_list = ["valid"]

    # set random seed for reproduction
    set_seed(config['train']['random_seed'])

    tensorboard_dir = os.path.join(eval_dir, "tensorboard")
    if not os.path.exists(tensorboard_dir):
        os.makedirs(tensorboard_dir)

    writer = SummaryWriter(log_dir=tensorboard_dir)

    # save the config
    save_yaml(config, os.path.join(eval_dir, "config.yaml"))

    action_function = ActionFunctionFactory.function_from_config(config)
    observation_function = ObservationFunctionFactory.function_from_config(
        config)

    use_gpu = torch.cuda.is_available()

    best_valid_loss = np.inf
    global_iteration = 0
    counters = {'train': 0, 'valid': 0}
    epoch_counter_external = 0
    stats = dict()

    for n_rollout in n_rollout_list:
        stats[n_rollout] = dict()
        config_tmp = copy.copy(config)
        config_tmp['train']['n_rollout'] = n_rollout
        for phase in phase_list:
            stats[n_rollout][phase] = dict()
            print("Loading data for %s" % phase)
            dataset = MultiEpisodeDataset(
                config_tmp,
                action_function=action_function,
                observation_function=observation_function,
                episodes=multi_episode_dict,
                phase=phase)

            dataloader = DataLoader(dataset,
                                    batch_size=config['train']['batch_size'],
                                    shuffle=True,
                                    num_workers=config['train']['num_workers'],
                                    drop_last=True)

            loss_tensor_container = {"l2_avg": [], "l2_final_step": []}

            step_duration_meter = AverageMeter()
            global_iteration = 0

            for epoch in range(num_epochs):
                for i, data in enumerate(dataloader):

                    loss_container = dict()  # store the losses for this step
                    # types of losses ["l2_avg", "l2_final_step"]

                    step_start_time = time.time()
                    global_iteration += 1
                    counters[phase] += 1

                    with torch.no_grad():
                        n_his = config['train']['n_history']
                        n_roll = n_rollout
                        n_samples = n_his + n_roll

                        if DEBUG:
                            print("global iteration: %d" % (global_iteration))
                            print("n_samples", n_samples)

                        # [B, n_samples, obs_dim]
                        observations = data['observations']

                        # [B, n_samples, action_dim]
                        actions = data['actions']
                        B = actions.shape[0]

                        if use_gpu:
                            observations = observations.cuda()
                            actions = actions.cuda()

                        # states, actions = data
                        assert actions.shape[1] == n_samples
                        loss_mse = 0.

                        # we don't have any visual observations, so states are observations
                        states = observations

                        # state_cur: B x n_his x state_dim
                        # state_cur = states[:, :n_his]

                        # [B, n_his, state_dim]
                        state_init = states[:, :n_his]

                        # We want to rollout n_roll steps
                        # actions = [B, n_his + n_roll, -1]
                        # so we want action_seq.shape = [B, n_roll, -1]
                        action_start_idx = 0
                        action_end_idx = n_his + n_roll - 1
                        action_seq = actions[:, action_start_idx:
                                             action_end_idx, :]

                        if DEBUG:
                            print("states.shape", states.shape)
                            print("state_init.shape", state_init.shape)
                            print("actions.shape", actions.shape)
                            print("action_seq.shape", action_seq.shape)

                        # try using models_dy.rollout_model instead of doing this manually
                        rollout_data = rollout_model(state_init=state_init,
                                                     action_seq=action_seq,
                                                     dynamics_net=model_dy,
                                                     compute_debug_data=False)

                        # [B, n_roll, state_dim]
                        state_rollout_pred = rollout_data['state_pred']

                        # [B, n_roll, state_dim]
                        state_rollout_gt = states[:, n_his:]

                        if DEBUG:
                            print("state_rollout_gt.shape",
                                  state_rollout_gt.shape)
                            print("state_rollout_pred.shape",
                                  state_rollout_pred.shape)

                        # the loss function is between
                        # [B, n_roll, state_dim]
                        state_pred_err = state_rollout_pred - state_rollout_gt

                        # [B]
                        l2_avg_tensor = torch.mean(torch.norm(state_pred_err,
                                                              dim=-1),
                                                   dim=1).detach().cpu()
                        l2_avg = l2_avg_tensor.mean()

                        # [B]
                        l2_final_step_tensor = torch.norm(
                            state_pred_err[:, -1], dim=-1).detach().cpu()
                        l2_final_step = l2_final_step_tensor.mean()

                        loss_tensor_container["l2_avg"].append(l2_avg_tensor)
                        loss_container["l2_avg"] = l2_avg

                        loss_tensor_container["l2_final_step"].append(
                            l2_final_step_tensor)
                        loss_container["l2_final_step"] = l2_final_step

                    step_duration_meter.update(time.time() - step_start_time)

                    if (i % config['train']['log_per_iter']
                            == 0) or (global_iteration %
                                      config['train']['log_per_iter'] == 0):
                        # print some logging information
                        log = ""
                        log += ', step time %.6f' % (step_duration_meter.avg)

                        # log data to tensorboard
                        for loss_type, loss_obj in loss_container.items():
                            plot_name = "%s/n_roll_%s/%s" % (loss_type, n_roll,
                                                             phase)
                            writer.add_scalar(plot_name, loss_obj.item(),
                                              global_iteration)

                            log += " %s: %.6f," % (plot_name, loss_obj.item())

                        print(log)

                    writer.flush()  # flush SummaryWriter events to disk

            stats[n_rollout][phase] = dict()
            for loss_type in loss_tensor_container:
                t = torch.cat(loss_tensor_container[loss_type])
                mean = t.mean()
                median = t.median()
                std = t.std()

                stats[n_rollout][phase][loss_type] = {
                    'mean': mean,
                    'median': median,
                    'std': std
                }

                for stat_type, val in stats[n_rollout][phase][loss_type].items(
                ):
                    plot_name = "stats/%s/n_roll_%d/%s/%s" % (
                        loss_type, n_roll, phase, stat_type)

                    for idx_tmp in [0, 10, 100]:
                        writer.add_scalar(plot_name, val, idx_tmp)
Example #6
0
def main():
    d = load_model_and_data()
    model_dy = d['model_dy']
    dataset = d['dataset']
    config = d['config']
    multi_episode_dict = d['multi_episode_dict']
    planner = d['planner']
    planner_config = planner.config

    idx_dict = get_object_and_robot_state_indices(config)
    object_indices = idx_dict['object_indices']
    robot_indices = idx_dict['robot_indices']

    n_his = config['train']['n_history']

    # save_dir = os.path.join(get_project_root(),  'sandbox/mpc/', get_current_YYYY_MM_DD_hh_mm_ss_ms())
    save_dir = os.path.join(get_project_root(),
                            'sandbox/mpc/push_right_box_horizontal')
    print("save_dir", save_dir)
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)

    # rotate
    # episode_names = dataset.get_episode_names()
    # print("len(episode_names)", len(episode_names))
    # episode_name = episode_names[0]
    # start_idx = 1
    # n_roll = 15

    # # straight + rotate
    # episode_name = "2020-06-29-21-04-16"
    # print('episode_name', episode_name)
    # start_idx = 1
    # n_roll = 15

    # this is a nice straight push . . .
    # push with box in horizontal position
    episode_name = "2020-06-29-22-03-45"
    start_idx = 2
    n_roll = 10

    # # validation set episodes
    # episode_names = dataset.get_episode_names()
    # print("len(episode_names)", len(episode_names))
    # episode_name = episode_names[1]
    # start_idx = 2
    # n_roll = 15

    camera_name = "d415_01"
    episode = multi_episode_dict[episode_name]
    print("episode_name", episode_name)

    vis = meshcat_utils.make_default_visualizer_object()
    vis.delete()

    idx_list = list(range(start_idx, start_idx + n_roll + 1))
    idx_list_GT = idx_list
    goal_idx = idx_list[-1]
    print("idx_list", idx_list)

    # visualize ground truth rollout
    if True:
        for display_idx, episode_idx in enumerate(idx_list):
            visualize_episode_data_single_timestep(
                vis=vis,
                dataset=dataset,
                episode=episode,
                camera_name=camera_name,
                episode_idx=episode_idx,
                display_idx=episode_idx,
            )

    data_goal = dataset._getitem(episode,
                                 goal_idx,
                                 rollout_length=1,
                                 n_history=1)
    states_goal = data_goal['observations_combined'][0]
    z_states_goal = model_dy.compute_z_state(states_goal)['z']

    print("states_goal.shape", states_goal.shape)
    print("z_states_goal.shape", z_states_goal.shape)

    ##### VISUALIZE PREDICTED ROLLOUT ##########
    data = dataset._getitem(episode, start_idx, rollout_length=n_roll)

    states = data['observations_combined'].unsqueeze(0)
    z = model_dy.compute_z_state(states)['z']
    actions = data['actions'].unsqueeze(0)
    idx_range_model_dy_input = data['idx_range']

    print("data.keys()", data.keys())
    print("data['idx_range']", data['idx_range'])

    # z_init
    z_init = z[:, :n_his]

    # actions_init
    action_start_idx = 0
    action_end_idx = n_his + n_roll - 1
    action_seq = actions[:, action_start_idx:action_end_idx]

    print("action_seq GT\n", action_seq)

    with torch.no_grad():
        rollout_data = rollout_model(state_init=z_init.cuda(),
                                     action_seq=action_seq.cuda(),
                                     dynamics_net=model_dy,
                                     compute_debug_data=False)

    # [B, n_roll, state_dim]
    # state_rollout_pred = rollout_data['state_pred']
    z_rollout_pred = rollout_data['state_pred'].squeeze()
    print("z_rollout_pred.shape", z_rollout_pred.shape)

    if True:
        for idx in range(len(z_rollout_pred)):
            display_idx = data['idx_range'][idx + n_his]
            visualize_model_prediction_single_timestep(
                vis,
                config,
                z_pred=z_rollout_pred[idx],
                display_idx=display_idx)

        print("z_rollout_pred.shape", z_rollout_pred.shape)

    # compute loss when rolled out using GT action sequence
    eval_indices = object_indices
    obs_goal = z_states_goal[object_indices].cuda()
    reward_data = planner_utils.evaluate_model_rollout(
        state_pred=rollout_data['state_pred'],
        obs_goal=obs_goal,
        eval_indices=eval_indices,
        terminal_cost_only=planner_config['mpc']['mppi']['terminal_cost_only'],
        p=planner_config['mpc']['mppi']['cost_norm'])

    print("reward_data using action_seq_GT\n", reward_data['reward'])

    ##### MPC ##########
    data = dataset._getitem(episode,
                            start_idx,
                            rollout_length=0,
                            n_history=config['train']['n_history'])

    state_cur = data['observations_combined'].cuda()
    z_state_cur = model_dy.compute_z_state(state_cur)['z']
    action_his = data['actions'][:(n_his - 1)].cuda()

    print("z_state_cur.shape", state_cur.shape)
    print("action_his.shape", action_his.shape)

    # don't seed with nominal actions just yet
    action_seq_rollout_init = None

    set_seed(SEED)
    mpc_out = planner.trajectory_optimization(
        state_cur=z_state_cur,
        action_his=action_his,
        obs_goal=obs_goal,
        model_dy=model_dy,
        action_seq_rollout_init=action_seq_rollout_init,
        n_look_ahead=n_roll,
        eval_indices=object_indices,
        rollout_best_action_sequence=True,
        verbose=True,
        add_grid_action_samples=True,
    )

    print("\n\n------MPC output-------\n\n")
    print("action_seq:\n", mpc_out['action_seq'])
    mpc_state_pred = mpc_out['state_pred']

    # current shape is [n_roll + 1, state_dim] but really should be
    # [n_roll, state_dim] . . . something is  up
    print("mpc_state_pred.shape", mpc_state_pred.shape)
    print("mpc_out['action_seq'].shape", mpc_out['action_seq'].shape)
    print("n_roll", n_roll)

    # visualize
    for idx in range(n_roll):
        episode_idx = start_idx + idx + 1
        visualize_model_prediction_single_timestep(vis,
                                                   config,
                                                   z_pred=mpc_state_pred[idx],
                                                   display_idx=episode_idx,
                                                   name_prefix="mpc",
                                                   color=[255, 0, 0])

    ######## MPC w/ dynamics model input builder #############
    print("\n\n-----DynamicsModelInputBuilder-----")

    # dynamics model input builder
    online_episode = OnlineEpisodeReader(no_copy=True)

    ref_descriptors = d['spatial_descriptor_data']['spatial_descriptors']
    ref_descriptors = torch_utils.cast_to_torch(ref_descriptors).cuda()
    K_matrix = episode.image_episode.camera_K_matrix(camera_name)
    T_world_camera = episode.image_episode.camera_pose(camera_name, 0)
    visual_observation_function = \
        VisualObservationFunctionFactory.descriptor_keypoints_3D(config=config,
                                                                 camera_name=camera_name,
                                                                 model_dd=d['model_dd'],
                                                                 ref_descriptors=ref_descriptors,
                                                                 K_matrix=K_matrix,
                                                                 T_world_camera=T_world_camera,
                                                                 )

    input_builder = DynamicsModelInputBuilder(
        observation_function=d['observation_function'],
        visual_observation_function=visual_observation_function,
        action_function=d['action_function'],
        episode=online_episode)

    compute_control_action_msg = dict()
    compute_control_action_msg['type'] = "COMPUTE_CONTROL_ACTION"

    for i in range(n_his):
        episode_idx = idx_range_model_dy_input[i]
        print("episode_idx", episode_idx)

        # add image information to
        data = add_images_to_episode_data(episode, episode_idx, camera_name)

        online_episode.add_data(copy.deepcopy(data))
        compute_control_action_msg['data'] = data

        # hack for seeing how much the history matters .. .
        # online_episode.add_data(copy.deepcopy(data))

    # save informatin for running zmq controller
    save_pickle(compute_control_action_msg,
                os.path.join(save_dir, 'compute_control_action_msg.p'))
    goal_idx = idx_list_GT[-1]
    goal_data = add_images_to_episode_data(episode, goal_idx, camera_name)
    goal_data['observations']['timestamp_system'] = time.time()
    plan_msg = {
        'type': "PLAN",
        'data': [goal_data],
        'n_roll': n_roll,
        'K_matrix': K_matrix,
        'T_world_camera': T_world_camera,
    }
    save_pickle(plan_msg, os.path.join(save_dir, "plan_msg.p"))

    print("len(online_episode)", len(online_episode))

    # use this to construct input
    # verify it's the same as what we got from using the dataset directly
    idx = online_episode.get_latest_idx()
    mpc_input_data = input_builder.get_dynamics_model_input(idx,
                                                            n_history=n_his)

    # print("mpc_input_data\n", mpc_input_data)
    state_cur_ib = mpc_input_data['states'].cuda()
    action_his_ib = mpc_input_data['actions'].cuda()

    z_state_cur_ib = model_dy.compute_z_state(state_cur_ib)['z']

    set_seed(SEED)
    mpc_out = planner.trajectory_optimization(
        state_cur=z_state_cur_ib,
        action_his=action_his_ib,
        obs_goal=obs_goal,
        model_dy=model_dy,
        action_seq_rollout_init=None,
        n_look_ahead=n_roll,
        eval_indices=object_indices,
        rollout_best_action_sequence=True,
        verbose=True,
        add_grid_action_samples=True,
    )

    # visualize
    for idx in range(n_roll):
        episode_idx = start_idx + idx + 1
        visualize_model_prediction_single_timestep(
            vis,
            config,
            z_pred=mpc_out['state_pred'][idx],
            display_idx=episode_idx,
            name_prefix="mpc_input_builder",
            color=[255, 255, 0])
def train_explore_and_learn(
        config,
        train_dir,  # str: directory to save output
        data_dir,
        visualize=False):

    # set random seed for reproduction
    set_seed(config['train_explore_and_learn']['random_seed'])

    tensorboard_dir = os.path.join(train_dir, "tensorboard")
    if not os.path.exists(tensorboard_dir):
        os.makedirs(tensorboard_dir)

    writer = SummaryWriter(log_dir=tensorboard_dir)

    # save the config
    save_yaml(config, os.path.join(train_dir, "config.yaml"))

    print(config)

    num_exploration_rounds = config['train_explore_and_learn'][
        'num_exploration_rounds']
    num_episodes_per_exploration_round = config['train_explore_and_learn'][
        'num_episodes_per_exploration_round']
    num_timesteps = config['train_explore_and_learn']['num_timesteps']

    # model_folder = os.path.join(train_dir, "../2020-04-05-23-00-30-887903")
    # model_file = os.path.join(model_folder, "net_best_dy_model.pth")
    # model_dy = torch.load(model_file)
    model_dy = None

    global_iteration = 0

    ##### setup to store the dataset
    metadata = dict()
    metadata['episodes'] = dict()

    # data collector
    data_collector = DrakePusherSliderEpisodeCollector(config)

    ##### explore and learn
    for idx_exploration_round in range(num_exploration_rounds):

        print("Exploration round %d / %d" %
              (idx_exploration_round, num_exploration_rounds))

        ### exploration

        if idx_exploration_round == 0:
            # initial exploration
            exploration_type = 'random'
        else:
            exploration_type = 'mppi'

        collect_episodes(
            config,
            metadata,
            data_collector,
            num_episodes_per_exploration_round,
            data_dir,
            visualize,
            exploration_type,
            model_dy=None if exploration_type == 'random' else model_dy)

        save_yaml(metadata, os.path.join(data_dir, 'metadata.yaml'))

        ### optimize the dynamics model
        model_dy, global_iteration = train_dynamics(config, train_dir,
                                                    data_dir, model_dy,
                                                    global_iteration, writer)
Example #8
0
def train_dynamics(
        config,
        train_dir,  # str: directory to save output
):

    # set random seed for reproduction
    set_seed(config['train']['random_seed'])

    st_epoch = config['train'][
        'resume_epoch'] if config['train']['resume_epoch'] > 0 else 0
    tee = Tee(os.path.join(train_dir, 'train_st_epoch_%d.log' % st_epoch), 'w')

    tensorboard_dir = os.path.join(train_dir, "tensorboard")
    if not os.path.exists(tensorboard_dir):
        os.makedirs(tensorboard_dir)

    writer = SummaryWriter(log_dir=tensorboard_dir)

    # save the config
    save_yaml(config, os.path.join(train_dir, "config.yaml"))

    print(config)

    # load the data
    episodes = load_episodes_from_config(config)

    action_function = ActionFunctionFactory.function_from_config(config)
    observation_function = ObservationFunctionFactory.function_from_config(
        config)

    datasets = {}
    dataloaders = {}
    data_n_batches = {}
    for phase in ['train', 'valid']:
        print("Loading data for %s" % phase)
        datasets[phase] = MultiEpisodeDataset(
            config,
            action_function=action_function,
            observation_function=observation_function,
            episodes=episodes,
            phase=phase)

        dataloaders[phase] = DataLoader(
            datasets[phase],
            batch_size=config['train']['batch_size'],
            shuffle=True if phase == 'train' else False,
            num_workers=config['train']['num_workers'])

        data_n_batches[phase] = len(dataloaders[phase])

    use_gpu = torch.cuda.is_available()

    # compute normalization parameters if not starting from pre-trained network . . .
    '''
    define model for dynamics prediction
    '''
    model_dy = None

    if config['train']['resume_epoch'] >= 0:
        # if resume from a pretrained checkpoint
        state_dict_path = os.path.join(
            train_dir, 'net_dy_epoch_%d_iter_%d_state_dict.pth' %
            (config['train']['resume_epoch'], config['train']['resume_iter']))
        print("Loading saved ckp from %s" % state_dict_path)

        # why is this needed if we already do torch.load???
        model_dy.load_state_dict(torch.load(state_dict_path))

        # don't we also need to load optimizer state from pre-trained???
    else:
        # not starting from pre-trained create the network and compute the
        # normalization parameters
        model_dy = DynaNetMLP(config)

        # compute normalization params
        stats = datasets["train"].compute_dataset_statistics()

        obs_mean = stats['observations']['mean']
        obs_std = stats['observations']['std']
        observations_normalizer = DataNormalizer(obs_mean, obs_std)

        action_mean = stats['actions']['mean']
        action_std = stats['actions']['std']
        actions_normalizer = DataNormalizer(action_mean, action_std)

        model_dy.action_normalizer = actions_normalizer
        model_dy.state_normalizer = observations_normalizer

    print("model_dy #params: %d" % count_trainable_parameters(model_dy))

    # criterion
    criterionMSE = nn.MSELoss()

    # optimizer
    params = model_dy.parameters()
    optimizer = optim.Adam(params,
                           lr=config['train']['lr'],
                           betas=(config['train']['adam_beta1'], 0.999))
    scheduler = ReduceLROnPlateau(optimizer,
                                  'min',
                                  factor=0.9,
                                  patience=10,
                                  verbose=True)

    if use_gpu:
        model_dy = model_dy.cuda()

    best_valid_loss = np.inf
    global_iteration = 0

    epoch_counter_external = 0

    try:
        for epoch in range(st_epoch, config['train']['n_epoch']):
            phases = ['train', 'valid']
            epoch_counter_external = epoch

            writer.add_scalar("Training Params/epoch", epoch, global_iteration)
            for phase in phases:
                model_dy.train(phase == 'train')

                meter_loss_rmse = AverageMeter()

                # bar = ProgressBar(max_value=data_n_batches[phase])
                loader = dataloaders[phase]

                for i, data in enumerate(loader):

                    global_iteration += 1

                    with torch.set_grad_enabled(phase == 'train'):
                        n_his, n_roll = config['train']['n_history'], config[
                            'train']['n_rollout']
                        n_samples = n_his + n_roll

                        if config['env']['type'] in ['PusherSlider']:
                            states = data['observations']
                            actions = data['actions']

                            if use_gpu:
                                states = states.cuda()
                                actions = actions.cuda()

                            # states, actions = data
                            assert states.size(1) == n_samples

                            # normalize states and actions once for entire rollout
                            states = model_dy.state_normalizer.normalize(
                                states)
                            actions = model_dy.action_normalizer.normalize(
                                actions)

                            B = states.size(0)
                            loss_mse = 0.

                            # state_cur: B x n_his x state_dim
                            state_cur = states[:, :n_his]

                            for j in range(n_roll):

                                state_des = states[:, n_his + j]

                                # action_cur: B x n_his x action_dim
                                action_cur = actions[:, j:j +
                                                     n_his] if actions is not None else None

                                # state_pred: B x state_dim
                                # state_cur: B x n_his x state_dim
                                # state_pred: B x state_dim
                                state_pred = model_dy(state_cur, action_cur)

                                loss_mse_cur = criterionMSE(
                                    state_pred, state_des)
                                loss_mse += loss_mse_cur / n_roll

                                # update state_cur
                                # state_pred.unsqueeze(1): B x 1 x state_dim
                                state_cur = torch.cat([
                                    state_cur[:, 1:],
                                    state_pred.unsqueeze(1)
                                ], 1)

                            meter_loss_rmse.update(np.sqrt(loss_mse.item()), B)

                    if phase == 'train':
                        optimizer.zero_grad()
                        loss_mse.backward()
                        optimizer.step()

                    if i % config['train']['log_per_iter'] == 0:
                        log = '%s [%d/%d][%d/%d] LR: %.6f' % (
                            phase, epoch, config['train']['n_epoch'], i,
                            data_n_batches[phase], get_lr(optimizer))
                        log += ', rmse: %.6f (%.6f)' % (np.sqrt(
                            loss_mse.item()), meter_loss_rmse.avg)

                        print(log)

                        # log data to tensorboard
                        # only do it once we have reached 500 iterations
                        if global_iteration > 500:
                            writer.add_scalar("Params/learning rate",
                                              get_lr(optimizer),
                                              global_iteration)
                            writer.add_scalar("Loss/train", loss_mse.item(),
                                              global_iteration)
                            writer.add_scalar("RMSE average loss/train",
                                              meter_loss_rmse.avg,
                                              global_iteration)

                    if phase == 'train' and i % config['train'][
                            'ckp_per_iter'] == 0:
                        save_model(
                            model_dy, '%s/net_dy_epoch_%d_iter_%d' %
                            (train_dir, epoch, i))

                log = '%s [%d/%d] Loss: %.6f, Best valid: %.6f' % (
                    phase, epoch, config['train']['n_epoch'],
                    meter_loss_rmse.avg, best_valid_loss)
                print(log)

                if phase == 'valid':
                    scheduler.step(meter_loss_rmse.avg)
                    writer.add_scalar("RMSE average loss/valid",
                                      meter_loss_rmse.avg, global_iteration)
                    if meter_loss_rmse.avg < best_valid_loss:
                        best_valid_loss = meter_loss_rmse.avg
                        save_model(model_dy, '%s/net_best_dy' % (train_dir))

                writer.flush()  # flush SummaryWriter events to disk

    except KeyboardInterrupt:
        # save network if we have a keyboard interrupt
        save_model(
            model_dy, '%s/net_dy_epoch_%d_keyboard_interrupt' %
            (train_dir, epoch_counter_external))
        writer.flush()  # flush SummaryWriter events to disk
def main(dataset_name):

    # sample from specific image
    dataset_paths = None
    episode_name = None
    camera_name = None
    episode_idx = None
    if dataset_name == "dps_box_on_side_600":
        camera_name = "camera_angled"
        episode_name = "2020-05-13-21-55-01-487901_idx_33"
        episode_idx = 22
        dataset_paths = exp_18_utils.get_dataset_paths(dataset_name)
    elif dataset_name == "correlle_mug-small_single_color_600":
        camera_name = "camera_1_top_down"
        episode_name = "2020-06-02-14-15-27-898104_idx_56"
        episode_idx = 18
        dataset_paths = exp_20_utils.get_dataset_paths(dataset_name)
    elif dataset_name == "correlle_mug-small_many_colors_600":
        camera_name = "camera_1_top_down"
        episode_name = "2020-06-03-15-48-50-165064_idx_56"
        episode_idx = 20
        dataset_paths = exp_20_utils.get_dataset_paths(dataset_name)
    else:
        raise ValueError("unknown dataset")

    dataset_root = dataset_paths['dataset_root']
    dataset_name = dataset_paths['dataset_name']

    ## Load Model
    model_name, model_file = get_DD_model_file(dataset_name)
    model_train_dir = os.path.dirname(model_file)

    print("model_train_dir", model_train_dir)
    print("model_file", model_file)
    model = torch.load(model_file)
    model = model.cuda()
    model = model.eval()

    multi_episode_dict = DCDrakeSimEpisodeReader.load_dataset(
        dataset_root, max_num_episodes=None)

    output_dir = os.path.join(
        model_train_dir,
        'precomputed_vision_data/descriptor_keypoints/dataset_%s/' %
        (dataset_name))

    # compute descriptor confidence scores
    if False:
        print("\n\n---------Computing Descriptor Confidence Scores-----------")
        metadata_file = os.path.join(output_dir, 'metadata.p')
        if os.path.isfile(metadata_file):
            answer = input(
                "metadata.p file already exists, do you want to overwrite it? y/n\n"
            )

            if answer == "y":
                shutil.rmtree(output_dir)
                print("removing existing file and continuing")

            else:
                print("aborting")
                quit()

        set_seed(0)

        compute_descriptor_confidences(
            multi_episode_dict,
            model,
            output_dir,
            batch_size=10,
            num_workers=20,
            model_file=model_file,
            camera_name=camera_name,
            num_ref_descriptors=50,
            num_batches=10,
            episode_name_arg=episode_name,
            episode_idx=episode_idx,
        )

    if False:
        confidence_score_data_file = os.path.join(output_dir, 'data.p')
        confidence_score_data = load_pickle(confidence_score_data_file)

        metadata_file = os.path.join(output_dir, 'metadata.p')
        metadata = load_pickle(metadata_file)

        print(
            "\n\n---------Selecting Spatially Separated Keypoints-----------")
        score_and_select_spatially_separated_keypoints(
            metadata,
            confidence_score_data=confidence_score_data,
            K=4,
            position_diff_threshold=15,
            output_dir=output_dir,
        )

    # visualize descriptors
    if False:
        metadata_file = os.path.join(output_dir, 'metadata.p')
        metadata = load_pickle(metadata_file)

        episode_name = metadata['episode_name']
        episode_idx = metadata['episode_idx']
        camera_name = metadata['camera_name']

        episode = multi_episode_dict[episode_name]
        data = episode.get_image_data(camera_name, episode_idx)
        rgb = data['rgb']

        uv = metadata['indices']

        print("uv.shape", uv.shape)

        color = [0, 255, 0]
        draw_reticles(rgb, uv[:, 0], uv[:, 1], label_color=color)

        save_file = os.path.join(output_dir, 'sampled_descriptors.png')

        plt.figure()
        plt.imshow(rgb)
        plt.savefig(save_file)
        plt.show()

    # visualize spatially separated descriptors
    if False:
        metadata_file = os.path.join(output_dir, 'metadata.p')
        metadata = load_pickle(metadata_file)

        spatial_descriptor_file = os.path.join(output_dir,
                                               'spatial_descriptors.p')
        spatial_descriptors_data = load_pickle(spatial_descriptor_file)
        des_idx = spatial_descriptors_data['spatial_descriptors_idx']

        episode_name = metadata['episode_name']
        episode_idx = metadata['episode_idx']
        camera_name = metadata['camera_name']

        episode = multi_episode_dict[episode_name]
        data = episode.get_image_data(camera_name, episode_idx)
        rgb = data['rgb']

        uv = metadata['indices']

        print("uv.shape", uv.shape)

        color = [0, 255, 0]
        draw_reticles(rgb, uv[des_idx, 0], uv[des_idx, 1], label_color=color)

        save_file = os.path.join(output_dir,
                                 'spatially_separated_descriptors.png')

        plt.figure()
        plt.imshow(rgb)
        plt.savefig(save_file)
        plt.show()

    if True:
        metadata_file = os.path.join(output_dir, 'metadata.p')
        metadata = load_pickle(metadata_file)

        # metadata_file = "/media/hdd/data/key_dynam/dev/experiments/09/precomputed_vision_data/dataset_2020-03-25-19-57-26-556093_constant_velocity_500/model_name_2020-04-07-14-31-35-804270_T_aug_dataset/2020-04-09-20-51-50-624799/metadata.p"
        # metadata = load_pickle(metadata_file)

        print("\n\n---------Precomputing Descriptor Keypoints-----------")
        descriptor_keypoints_output_dir = os.path.join(output_dir,
                                                       "descriptor_keypoints")
        precompute_descriptor_keypoints(multi_episode_dict,
                                        model,
                                        descriptor_keypoints_output_dir,
                                        ref_descriptors_metadata=metadata,
                                        batch_size=8,
                                        num_workers=20,
                                        camera_names=[camera_name])

    print("Data saved at: ", output_dir)
    print("Finished Normally")
def train_dynamics(
    config,
    train_dir,  # str: directory to save output
    multi_episode_dict=None,
    visual_observation_function=None,
    metadata=None,
    spatial_descriptors_data=None,
):
    assert multi_episode_dict is not None
    # assert spatial_descriptors_idx is not None

    # set random seed for reproduction
    set_seed(config['train']['random_seed'])

    st_epoch = config['train'][
        'resume_epoch'] if config['train']['resume_epoch'] > 0 else 0
    tee = Tee(os.path.join(train_dir, 'train_st_epoch_%d.log' % st_epoch), 'w')

    tensorboard_dir = os.path.join(train_dir, "tensorboard")
    if not os.path.exists(tensorboard_dir):
        os.makedirs(tensorboard_dir)

    writer = SummaryWriter(log_dir=tensorboard_dir)

    # save the config
    save_yaml(config, os.path.join(train_dir, "config.yaml"))

    if metadata is not None:
        save_pickle(metadata, os.path.join(train_dir, 'metadata.p'))

    if spatial_descriptors_data is not None:
        save_pickle(spatial_descriptors_data,
                    os.path.join(train_dir, 'spatial_descriptors.p'))

    training_stats = dict()
    training_stats_file = os.path.join(train_dir, 'training_stats.yaml')

    action_function = ActionFunctionFactory.function_from_config(config)
    observation_function = ObservationFunctionFactory.function_from_config(
        config)

    datasets = {}
    dataloaders = {}
    data_n_batches = {}
    for phase in ['train', 'valid']:
        print("Loading data for %s" % phase)
        datasets[phase] = MultiEpisodeDataset(
            config,
            action_function=action_function,
            observation_function=observation_function,
            episodes=multi_episode_dict,
            phase=phase,
            visual_observation_function=visual_observation_function)

        print("len(datasets[phase])", len(datasets[phase]))
        dataloaders[phase] = DataLoader(
            datasets[phase],
            batch_size=config['train']['batch_size'],
            shuffle=True if phase == 'train' else False,
            num_workers=config['train']['num_workers'],
            drop_last=True)

        data_n_batches[phase] = len(dataloaders[phase])

    use_gpu = torch.cuda.is_available()

    # compute normalization parameters if not starting from pre-trained network . . .

    if False:
        dataset = datasets["train"]
        data = dataset[0]
        print("data['observations_combined'].shape",
              data['observations_combined'].shape)
        print("data.keys()", data.keys())

        print("data['observations_combined']",
              data['observations_combined'][0])
        print("data['observations_combined'].shape",
              data['observations_combined'].shape)
        print("data['actions'].shape", data['actions'].shape)
        print("data['actions']\n", data['actions'])
        quit()
    '''
    Build model for dynamics prediction
    '''
    model_dy = build_dynamics_model(config)
    if config['dynamics_net'] == "mlp_weight_matrix":
        raise ValueError("can't use weight matrix with standard setup")

    # criterion
    criterionMSE = nn.MSELoss()
    l1Loss = nn.L1Loss()
    smoothL1 = nn.SmoothL1Loss()

    # optimizer
    params = model_dy.parameters()
    lr = float(config['train']['lr'])
    optimizer = optim.Adam(params,
                           lr=lr,
                           betas=(config['train']['adam_beta1'], 0.999))

    # setup scheduler
    sc = config['train']['lr_scheduler']
    scheduler = None

    if config['train']['lr_scheduler']['enabled']:
        if config['train']['lr_scheduler']['type'] == "ReduceLROnPlateau":
            scheduler = ReduceLROnPlateau(optimizer,
                                          mode='min',
                                          factor=sc['factor'],
                                          patience=sc['patience'],
                                          threshold_mode=sc['threshold_mode'],
                                          cooldown=sc['cooldown'],
                                          verbose=True)
        elif config['train']['lr_scheduler']['type'] == "StepLR":
            step_size = config['train']['lr_scheduler']['step_size']
            gamma = config['train']['lr_scheduler']['gamma']
            scheduler = StepLR(optimizer, step_size=step_size, gamma=gamma)
        else:
            raise ValueError("unknown scheduler type: %s" %
                             (config['train']['lr_scheduler']['type']))

    if use_gpu:
        print("using gpu")
        model_dy = model_dy.cuda()

    # print("model_dy.vision_net._ref_descriptors.device", model_dy.vision_net._ref_descriptors.device)
    # print("model_dy.vision_net #params: %d" %(count_trainable_parameters(model_dy.vision_net)))

    best_valid_loss = np.inf
    valid_loss_type = config['train']['valid_loss_type']
    global_iteration = 0
    counters = {'train': 0, 'valid': 0}
    epoch_counter_external = 0
    loss = 0

    try:
        for epoch in range(st_epoch, config['train']['n_epoch']):
            phases = ['train', 'valid']
            epoch_counter_external = epoch

            writer.add_scalar("Training Params/epoch", epoch, global_iteration)
            for phase in phases:

                # only validate at a certain frequency
                if (phase == "valid") and (
                    (epoch % config['train']['valid_frequency']) != 0):
                    continue

                model_dy.train(phase == 'train')

                average_meter_container = dict()

                step_duration_meter = AverageMeter()

                # bar = ProgressBar(max_value=data_n_batches[phase])
                loader = dataloaders[phase]

                for i, data in enumerate(loader):

                    loss_container = dict()  # store the losses for this step

                    step_start_time = time.time()

                    global_iteration += 1
                    counters[phase] += 1

                    with torch.set_grad_enabled(phase == 'train'):
                        n_his, n_roll = config['train']['n_history'], config[
                            'train']['n_rollout']
                        n_samples = n_his + n_roll

                        if DEBUG:
                            print("global iteration: %d" % (global_iteration))
                            print("n_samples", n_samples)

                        # [B, n_samples, obs_dim]
                        states = data['observations_combined']

                        # [B, n_samples, action_dim]
                        actions = data['actions']
                        B = actions.shape[0]

                        if use_gpu:
                            states = states.cuda()
                            actions = actions.cuda()

                        # state_cur: B x n_his x state_dim
                        # state_cur = states[:, :n_his]

                        # [B, n_his, state_dim]
                        state_init = states[:, :n_his]

                        # We want to rollout n_roll steps
                        # actions = [B, n_his + n_roll, -1]
                        # so we want action_seq.shape = [B, n_roll, -1]
                        action_start_idx = 0
                        action_end_idx = n_his + n_roll - 1
                        action_seq = actions[:, action_start_idx:
                                             action_end_idx, :]

                        if DEBUG:
                            print("states.shape", states.shape)
                            print("state_init.shape", state_init.shape)
                            print("actions.shape", actions.shape)
                            print("action_seq.shape", action_seq.shape)

                        # try using models_dy.rollout_model instead of doing this manually
                        rollout_data = rollout_model(state_init=state_init,
                                                     action_seq=action_seq,
                                                     dynamics_net=model_dy,
                                                     compute_debug_data=False)

                        # [B, n_roll, state_dim]
                        state_rollout_pred = rollout_data['state_pred']

                        # [B, n_roll, state_dim]
                        state_rollout_gt = states[:, n_his:]

                        if DEBUG:
                            print("state_rollout_gt.shape",
                                  state_rollout_gt.shape)
                            print("state_rollout_pred.shape",
                                  state_rollout_pred.shape)

                        # the loss function is between
                        # [B, n_roll, state_dim]
                        state_pred_err = state_rollout_pred - state_rollout_gt

                        # everything is in 3D space now so no need to do any scaling
                        # all the losses would be in meters . . . .
                        loss_mse = criterionMSE(state_rollout_pred,
                                                state_rollout_gt)
                        loss_l1 = l1Loss(state_rollout_pred, state_rollout_gt)
                        loss_l2 = torch.norm(state_pred_err, dim=-1).mean()
                        loss_smoothl1 = smoothL1(state_rollout_pred,
                                                 state_rollout_gt)
                        loss_smoothl1_final_step = smoothL1(
                            state_rollout_pred[:, -1], state_rollout_gt[:, -1])

                        # compute losses at final step of the rollout
                        mse_final_step = criterionMSE(
                            state_rollout_pred[:, -1], state_rollout_gt[:, -1])
                        l2_final_step = torch.norm(state_pred_err[:, -1],
                                                   dim=-1).mean()
                        l1_final_step = l1Loss(state_rollout_pred[:, -1],
                                               state_rollout_gt[:, -1])

                        loss_container['mse'] = loss_mse
                        loss_container['l1'] = loss_l1
                        loss_container['mse_final_step'] = mse_final_step
                        loss_container['l1_final_step'] = l1_final_step
                        loss_container['l2_final_step'] = l2_final_step
                        loss_container['l2'] = loss_l2
                        loss_container['smooth_l1'] = loss_smoothl1
                        loss_container[
                            'smooth_l1_final_step'] = loss_smoothl1_final_step

                        # compute the loss
                        loss = 0
                        for key, val in config['loss_function'].items():
                            if val['enabled']:
                                loss += loss_container[key] * val['weight']

                        loss_container['loss'] = loss

                        for key, val in loss_container.items():
                            if not key in average_meter_container:
                                average_meter_container[key] = AverageMeter()

                            average_meter_container[key].update(val.item(), B)

                    step_duration_meter.update(time.time() - step_start_time)

                    if phase == 'train':
                        optimizer.zero_grad()
                        loss.backward()
                        optimizer.step()

                    if (i % config['train']['log_per_iter']
                            == 0) or (global_iteration %
                                      config['train']['log_per_iter'] == 0):
                        log = '%s [%d/%d][%d/%d] LR: %.6f' % (
                            phase, epoch, config['train']['n_epoch'], i,
                            data_n_batches[phase], get_lr(optimizer))

                        log += ', l2: %.6f' % (loss_container['l2'].item())
                        log += ', l2_final_step: %.6f' % (
                            loss_container['l2_final_step'].item())

                        log += ', step time %.6f' % (step_duration_meter.avg)
                        step_duration_meter.reset()

                        print(log)

                        # log data to tensorboard
                        # only do it once we have reached 100 iterations
                        if global_iteration > 100:
                            writer.add_scalar("Params/learning rate",
                                              get_lr(optimizer),
                                              global_iteration)
                            writer.add_scalar("Loss_train/%s" % (phase),
                                              loss.item(), global_iteration)

                            for loss_type, loss_obj in loss_container.items():
                                plot_name = "Loss/%s/%s" % (loss_type, phase)
                                writer.add_scalar(plot_name, loss_obj.item(),
                                                  counters[phase])

                    if phase == 'train' and global_iteration % config['train'][
                            'ckp_per_iter'] == 0:
                        save_model(
                            model_dy, '%s/net_dy_epoch_%d_iter_%d' %
                            (train_dir, epoch, i))

                log = '%s [%d/%d] Loss: %.6f, Best valid: %.6f' % (
                    phase, epoch, config['train']['n_epoch'],
                    average_meter_container[valid_loss_type].avg,
                    best_valid_loss)
                print(log)

                # record all average_meter losses
                for key, meter in average_meter_container.items():
                    writer.add_scalar("AvgMeter/%s/%s" % (key, phase),
                                      meter.avg, epoch)

                if phase == "train":
                    if (scheduler is not None) and (
                            config['train']['lr_scheduler']['type']
                            == "StepLR"):
                        scheduler.step()

                if phase == 'valid':
                    if (scheduler is not None) and (
                            config['train']['lr_scheduler']['type']
                            == "ReduceLROnPlateau"):
                        scheduler.step(
                            average_meter_container[valid_loss_type].avg)

                    if average_meter_container[
                            valid_loss_type].avg < best_valid_loss:
                        best_valid_loss = average_meter_container[
                            valid_loss_type].avg
                        training_stats['epoch'] = epoch
                        training_stats['global_iteration'] = counters['valid']
                        save_yaml(training_stats, training_stats_file)
                        save_model(model_dy, '%s/net_best_dy' % (train_dir))

                writer.flush()  # flush SummaryWriter events to disk

    except KeyboardInterrupt:
        # save network if we have a keyboard interrupt
        save_model(
            model_dy, '%s/net_dy_epoch_%d_keyboard_interrupt' %
            (train_dir, epoch_counter_external))
        writer.flush()  # flush SummaryWriter events to disk
Example #11
0
def train_dynamics(config,
                   train_dir, # str: directory to save output
                   multi_episode_dict, # multi_episode_dict
                   ):

    use_precomputed_keypoints = config['dataset']['visual_observation']['enabled'] and config['dataset']['visual_observation']['descriptor_keypoints']

    # set random seed for reproduction
    set_seed(config['train']['random_seed'])

    st_epoch = config['train']['resume_epoch'] if config['train']['resume_epoch'] > 0 else 0
    tee = Tee(os.path.join(train_dir, 'train_st_epoch_%d.log' % st_epoch), 'w')

    tensorboard_dir = os.path.join(train_dir, "tensorboard")
    if not os.path.exists(tensorboard_dir):
        os.makedirs(tensorboard_dir)

    writer = SummaryWriter(log_dir=tensorboard_dir)

    # save the config
    save_yaml(config, os.path.join(train_dir, "config.yaml"))


    action_function = ActionFunctionFactory.function_from_config(config)
    observation_function = ObservationFunctionFactory.function_from_config(config)

    datasets = {}
    dataloaders = {}
    data_n_batches = {}
    for phase in ['train', 'valid']:
        print("Loading data for %s" % phase)
        datasets[phase] = MultiEpisodeDataset(config,
                                              action_function=action_function,
                                              observation_function=observation_function,
                                              episodes=multi_episode_dict,
                                              phase=phase)

        dataloaders[phase] = DataLoader(
            datasets[phase], batch_size=config['train']['batch_size'],
            shuffle=True if phase == 'train' else False,
            num_workers=config['train']['num_workers'], drop_last=True)

        data_n_batches[phase] = len(dataloaders[phase])

    use_gpu = torch.cuda.is_available()

    # compute normalization parameters if not starting from pre-trained network . . .


    '''
    define model for dynamics prediction
    '''

    model_dy = build_visual_dynamics_model(config)
    K = config['vision_net']['num_ref_descriptors']

    print("model_dy.vision_net._reference_descriptors.shape", model_dy.vision_net._ref_descriptors.shape)
    print("model_dy.vision_net.descriptor_dim", model_dy.vision_net.descriptor_dim)
    print("model_dy #params: %d" % count_trainable_parameters(model_dy))

    camera_name = config['vision_net']['camera_name']
    W = config['env']['rgbd_sensors']['sensor_list'][camera_name]['width']
    H = config['env']['rgbd_sensors']['sensor_list'][camera_name]['height']
    diag = np.sqrt(W**2 + H**2) # use this to scale the loss

    # sample reference descriptors unless using precomputed keypoints
    if not use_precomputed_keypoints:
        # sample reference descriptors
        episode_names = list(datasets["train"].episode_dict.keys())
        episode_names.sort()
        episode_name = episode_names[0]
        episode = datasets["train"].episode_dict[episode_name]
        episode_idx = 0
        camera_name = config["vision_net"]["camera_name"]
        image_data = episode.get_image_data(camera_name, episode_idx)
        des_img = torch.Tensor(image_data['descriptor'])
        mask_img = torch.Tensor(image_data['mask'])
        ref_descriptor_dict = sample_descriptors(des_img,
                                                 mask_img,
                                                 config['vision_net']['num_ref_descriptors'])



        model_dy.vision_net._ref_descriptors.data = ref_descriptor_dict['descriptors']
        model_dy.vision_net.reference_image = image_data['rgb']
        model_dy.vision_net.reference_indices = ref_descriptor_dict['indices']
    else:
        metadata_file = os.path.join(get_data_root(), config['dataset']['descriptor_keypoints_dir'], 'metadata.p')
        descriptor_metadata = load_pickle(metadata_file)

        # [32, 2]
        ref_descriptors = torch.Tensor(descriptor_metadata['ref_descriptors'])

        # [K, 2]
        ref_descriptors = ref_descriptors[:K]
        model_dy.vision_net._ref_descriptors.data = ref_descriptors
        model_dy.vision_net._ref_descriptors_metadata = descriptor_metadata

        # this is just a sanity check
        assert model_dy.vision_net.num_ref_descriptors == K

    print("reference_descriptors", model_dy.vision_net._ref_descriptors)

    # criterion
    criterionMSE = nn.MSELoss()
    l1Loss = nn.L1Loss()

    # optimizer
    params = model_dy.parameters()
    lr = float(config['train']['lr'])
    optimizer = optim.Adam(params, lr=lr, betas=(config['train']['adam_beta1'], 0.999))

    # setup scheduler
    sc = config['train']['lr_scheduler']
    scheduler = ReduceLROnPlateau(optimizer,
                                  mode='min',
                                  factor=sc['factor'],
                                  patience=sc['patience'],
                                  threshold_mode=sc['threshold_mode'],
                                  cooldown= sc['cooldown'],
                                  verbose=True)

    if use_gpu:
        print("using gpu")
        model_dy = model_dy.cuda()

    print("model_dy.vision_net._ref_descriptors.device", model_dy.vision_net._ref_descriptors.device)
    print("model_dy.vision_net #params: %d" %(count_trainable_parameters(model_dy.vision_net)))


    best_valid_loss = np.inf
    global_iteration = 0
    epoch_counter_external = 0

    try:
        for epoch in range(st_epoch, config['train']['n_epoch']):
            phases = ['train', 'valid']
            epoch_counter_external = epoch

            writer.add_scalar("Training Params/epoch", epoch, global_iteration)
            for phase in phases:
                model_dy.train(phase == 'train')

                meter_loss_rmse = AverageMeter()
                step_duration_meter = AverageMeter()


                # bar = ProgressBar(max_value=data_n_batches[phase])
                loader = dataloaders[phase]

                for i, data in enumerate(loader):

                    step_start_time = time.time()

                    global_iteration += 1

                    with torch.set_grad_enabled(phase == 'train'):
                        n_his, n_roll = config['train']['n_history'], config['train']['n_rollout']
                        n_samples = n_his + n_roll

                        if DEBUG:
                            print("global iteration: %d" %(global_iteration))


                        # visual_observations = data['visual_observations']
                        visual_observations_list = data['visual_observations_list']
                        observations = data['observations']
                        actions = data['actions']

                        if use_gpu:
                            observations = observations.cuda()
                            actions = actions.cuda()

                        # states, actions = data
                        assert actions.size(1) == n_samples

                        B = actions.size(0)
                        loss_mse = 0.


                        # compute the output of the visual model for all timesteps
                        visual_model_output_list = []
                        for visual_obs in visual_observations_list:
                            # visual_obs is a dict containing observation for a single
                            # time step (of course across a batch however)
                            # visual_obs[<camera_name>]['rgb_tensor'] has shape [B, 3, H, W]

                            # probably need to cast input to cuda
                            dynamics_net_input = None
                            if use_precomputed_keypoints:
                                # note precomputed descriptors stored on disk are of size
                                # K = 32. We need to trim it down to the appropriate size
                                # [B, K_disk, 2] where K_disk is num keypoints on disk
                                keypoints = visual_obs[camera_name]['descriptor_keypoints']


                                # [B, 32, 2] where K is num keypoints
                                keypoints = keypoints[:,:K]

                                if DEBUG:
                                    print("keypoints.shape", keypoints.shape)

                                dynamics_net_input = keypoints.flatten(start_dim=1)
                            else:
                                out_dict = model_dy.vision_net.forward(visual_obs)

                                # [B, vision_model_out_dim]
                                dynamics_net_input = out_dict['dynamics_net_input']

                            visual_model_output_list.append(dynamics_net_input)

                        # concatenate this into a tensor
                        # [B, n_samples, vision_model_out_dim]
                        visual_model_output = torch.stack(visual_model_output_list, dim=1)

                        # cast this to float so it can be concatenated below
                        visual_model_output = visual_model_output.type_as(observations)

                        if DEBUG:
                            print('visual_model_output.shape', visual_model_output.shape)
                            print("observations.shape", observations.shape)
                            print("actions.shape", actions.shape)

                        # states is gotten by concatenating visual_observations and observations
                        # [B, n_samples, vision_model_out_dim + obs_dim]
                        states = torch.cat((visual_model_output, observations), dim=-1)

                        # state_cur: B x n_his x state_dim
                        state_cur = states[:, :n_his]

                        if DEBUG:
                            print("states.shape", states.shape)

                        for j in range(n_roll):

                            if DEBUG:
                                print("n_roll j: %d" %(j))

                            state_des = states[:, n_his + j]

                            # action_cur: B x n_his x action_dim
                            action_cur = actions[:, j : j + n_his] if actions is not None else None

                            # state_pred: B x state_dim
                            # state_pred: B x state_dim
                            input = {'observation': state_cur,
                                     'action': action_cur,
                                     }

                            if DEBUG:
                                print("state_cur.shape", state_cur.shape)
                                print("action_cur.shape", action_cur.shape)

                            state_pred = model_dy.dynamics_net(input)

                            # normalize by diag to ensure the loss is in [0,1] range
                            loss_mse_cur = criterionMSE(state_pred/diag, state_des/diag)
                            loss_mse += loss_mse_cur / n_roll

                            # l1Loss
                            loss_l1 = l1Loss(state_pred, state_des)

                            # update state_cur
                            # state_pred.unsqueeze(1): B x 1 x state_dim
                            # state_cur: B x n_his x state_dim
                            state_cur = torch.cat([state_cur[:, 1:], state_pred.unsqueeze(1)], 1)

                            meter_loss_rmse.update(np.sqrt(loss_mse.item()), B)

                    step_duration_meter.update(time.time() - step_start_time)
                    if phase == 'train':
                        optimizer.zero_grad()
                        loss_mse.backward()
                        optimizer.step()

                    if (i % config['train']['log_per_iter'] == 0) or (global_iteration % config['train']['log_per_iter'] == 0):
                        log = '%s [%d/%d][%d/%d] LR: %.6f' % (
                            phase, epoch, config['train']['n_epoch'], i, data_n_batches[phase],
                            get_lr(optimizer))
                        log += ', rmse: %.6f (%.6f)' % (
                            np.sqrt(loss_mse.item()), meter_loss_rmse.avg)

                        log += ', step time %.6f' %(step_duration_meter.avg)
                        step_duration_meter.reset()


                        print(log)

                        # log data to tensorboard
                        # only do it once we have reached 100 iterations
                        if global_iteration > 100:
                            writer.add_scalar("Params/learning rate", get_lr(optimizer), global_iteration)
                            writer.add_scalar("Loss_MSE/%s" %(phase), loss_mse.item(), global_iteration)
                            writer.add_scalar("L1/%s" %(phase), loss_l1.item(), global_iteration)
                            writer.add_scalar("L1_fraction/%s" %(phase), loss_l1.item()/diag, global_iteration)
                            writer.add_scalar("RMSE average loss/%s" %(phase), meter_loss_rmse.avg, global_iteration)

                    if phase == 'train' and i % config['train']['ckp_per_iter'] == 0:
                        save_model(model_dy, '%s/net_dy_epoch_%d_iter_%d' % (train_dir, epoch, i))



                log = '%s [%d/%d] Loss: %.6f, Best valid: %.6f' % (
                    phase, epoch, config['train']['n_epoch'], meter_loss_rmse.avg, best_valid_loss)
                print(log)

                if phase == 'valid':
                    if config['train']['lr_scheduler']['enabled']:
                        scheduler.step(meter_loss_rmse.avg)

                    # print("\nPhase == valid")
                    # print("meter_loss_rmse.avg", meter_loss_rmse.avg)
                    # print("best_valid_loss", best_valid_loss)
                    if meter_loss_rmse.avg < best_valid_loss:
                        best_valid_loss = meter_loss_rmse.avg
                        save_model(model_dy, '%s/net_best_dy' % (train_dir))

                writer.flush() # flush SummaryWriter events to disk

    except KeyboardInterrupt:
        # save network if we have a keyboard interrupt
        save_model(model_dy, '%s/net_dy_epoch_%d_keyboard_interrupt' % (train_dir, epoch_counter_external))
        writer.flush() # flush SummaryWriter events to disk
Example #12
0
def collect_episodes(config,
                     output_dir=None,
                     visualize=True,
                     debug=False,
                     run_from_thread=False,
                     seed=None):

    # gets a random seed for each thread/process independently
    if seed is None:
        seed = np.random.RandomState().randint(0, 10000)

    set_seed(seed)

    if output_dir is None:
        output_dir = os.path.join(os.getcwd(), 'data')

    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    # save the config
    config_save_file = os.path.join(output_dir, 'config.yaml')
    save_yaml(config, config_save_file)

    # initialize config for DataCollector
    num_episodes = config['dataset']['num_episodes']

    # record some metadata
    metadata = dict()
    metadata['episodes'] = dict()

    while (len(metadata['episodes']) < num_episodes):

        i = len(metadata['episodes'])

        if debug:
            input("Press Enter to continue...")

        print("\n")
        start_time = time.time()
        print("collecting episode %d of %d" % (i + 1, num_episodes))
        name = "%s_idx_%d" % (get_current_YYYY_MM_DD_hh_mm_ss_ms(), i)

        n_his = config['train_dynamics']['n_history']
        ic = generate_initial_condition(
            config=config,
            T_aug_enabled=True,
            n_his=n_his,
            randomize_velocity=True,
            randomize_sdf=True,
            randomize_color=True,
        )

        env = DrakeMugsEnv(ic['config'], visualize=visualize)

        if debug:
            print("initial condition\n", ic)

        # set initial condition on environment
        if visualize:
            print("setting target realtime rate 1.0")
            env.simulator.set_target_realtime_rate(1.0)

        env.reset()
        context = env.get_mutable_context()
        env.set_object_position(context, ic['q_slider'])
        env.set_pusher_position(context, ic['q_pusher'])

        print("ic['action_sequence'].shape", ic['action_sequence'].shape)

        # simulate for 10 seconds to let the mug stabilize
        action_zero = env.get_zero_action()
        env.step(action_zero, dt=10.0)

        episode = collect_single_episode(
            env, action_seq=ic['action_sequence'])['episode_container']

        # potentially discard it if the object didn't move during the data collection
        if len(episode._data['trajectory']) < 10:
            print("trajectory was too short, skipping")
            continue

        obs_start = episode._data['trajectory'][0]['observation']
        obs_end = episode._data['trajectory'][-1]['observation']

        q_slider_start = obs_start['slider']['position']['translation']
        q_slider_end = obs_end['slider']['position']['translation']

        dq_slider = obs_start['slider']['position']['translation'] - obs_end[
            'slider']['position']['translation']

        if debug:
            print("len(episode._data['trajectory'])",
                  len(episode._data['trajectory']))
            print("q_slider_start", q_slider_start)
            print("q_slider_end", q_slider_end)
            print("dq_slider", dq_slider)
            print("np.linalg.norm(dq_slider)", np.linalg.norm(dq_slider))

        pose_error = compute_pose_error(obs_start, obs_end)

        # if slider didn't move by at least 1 mm then discard this episode
        if (pose_error['position_error'] <
                0.01) and (pose_error['angle_error_degrees'] < 10):
            print(
                "discarding episode since slider didn't move sufficiently far")
            continue

        print("saving to disk")
        metadata['episodes'][name] = dict()

        image_data_file = episode.save_images_to_hdf5(output_dir)
        non_image_data_file = episode.save_non_image_data_to_pickle(output_dir)

        print("output_dir:", output_dir)

        print("non_image_data.keys()", episode.non_image_data.keys())

        metadata['episodes'][name]['non_image_data_file'] = non_image_data_file
        metadata['episodes'][name]['image_data_file'] = image_data_file

        print("done saving to disk")
        elapsed = time.time() - start_time
        print("single episode took: %.2f seconds" % (elapsed))

    if not run_from_thread:
        save_yaml(metadata, os.path.join(output_dir, 'metadata.yaml'))

    print("Finished collecting episodes")

    return {'metadata': metadata}
Example #13
0
def multiprocess_main(num_episodes=1000, num_threads=4):
    set_seed(500)  # just randomly chosen

    start_time = time.time()
    config = load_yaml(
        os.path.join(get_project_root(),
                     'experiments/exp_20_mugs/config.yaml'))

    num_episodes_per_thread = math.ceil(num_episodes / num_threads)
    num_episodes = num_threads * num_episodes_per_thread

    # DATASET_NAME = "mugs_random_colors_%d" % (num_episodes)
    # DATASET_NAME = "single_mug_%d"
    # DATASET_NAME = "correlle_mug-small_single_color_%d" %(num_episodes)
    # DATASET_NAME = "single_corelle_mug_%d" %(num_episodes)
    # DATASET_NAME = "correlle_mug-small_many_colors_%d" %(num_episodes)
    DATASET_NAME = "correlle_mug-small_many_colors_random_%d" % (num_episodes)
    # OUTPUT_DIR = os.path.join(get_data_root(), 'sandbox', DATASET_NAME)
    OUTPUT_DIR = os.path.join(get_data_ssd_root(), 'dataset', DATASET_NAME)
    print("OUTPUT_DIR:", OUTPUT_DIR)

    output_dir = OUTPUT_DIR
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    def f(q_tmp):
        config = load_yaml(
            os.path.join(get_project_root(),
                         'experiments/exp_20_mugs/config.yaml'))
        config['dataset']['num_episodes'] = num_episodes_per_thread
        out = collect_episodes(config,
                               output_dir=OUTPUT_DIR,
                               visualize=False,
                               debug=False,
                               run_from_thread=True)

        q_tmp.put(out)

    q = Queue()

    process_list = []
    for i in range(num_threads):
        p = Process(target=f, args=(q, ))
        p.start()
        process_list.append(p)

    metadata = {'episodes': {}}
    for p in process_list:
        while p.is_alive():
            p.join(timeout=1)

            # empty out the queue
            while not q.empty():
                out = q.get()
                metadata['episodes'].update(out['metadata']['episodes'])

    # double check
    for p in process_list:
        p.join()

    time.sleep(1.0)
    print("All threads joined")
    elapsed = time.time() - start_time

    # collect the metadata.yaml files

    while not q.empty():
        out = q.get()
        metadata['episodes'].update(out['metadata']['episodes'])

    save_yaml(metadata, os.path.join(OUTPUT_DIR, 'metadata.yaml'))
    print("Generating and saving dataset to disk took %d seconds" %
          (int(elapsed)))
def mpc_w_learned_dynamics(config,
                           train_dir,
                           mpc_dir,
                           state_dict_path=None,
                           keypoint_observation=False):

    # set random seed for reproduction
    set_seed(config['train']['random_seed'])

    tee = Tee(os.path.join(mpc_dir, 'mpc.log'), 'w')

    print(config)

    use_gpu = torch.cuda.is_available()
    '''
    model
    '''
    if config['dynamics']['model_type'] == 'mlp':
        model_dy = DynaNetMLP(config)
    else:
        raise AssertionError("Unknown model type %s" %
                             config['dynamics']['model_type'])

    # print model #params
    print("model #params: %d" % count_trainable_parameters(model_dy))

    if state_dict_path is None:
        if config['mpc']['mpc_dy_epoch'] == -1:
            state_dict_path = os.path.join(train_dir, 'net_best_dy.pth')
        else:
            state_dict_path = os.path.join(
                train_dir, 'net_dy_epoch_%d_iter_%d.pth' % \
                (config['mpc']['mpc_dy_epoch'], config['mpc']['mpc_dy_iter']))

        print("Loading saved ckp from %s" % state_dict_path)

    model_dy.load_state_dict(torch.load(state_dict_path))
    model_dy.eval()

    if use_gpu:
        model_dy.cuda()

    criterionMSE = nn.MSELoss()

    # generate action/observation functions
    action_function = ActionFunctionFactory.function_from_config(config)
    observation_function = ObservationFunctionFactory.function_from_config(
        config)

    # planner
    planner = planner_from_config(config)
    '''
    env
    '''
    # set up goal
    obs_goals = np.array([[
        262.9843, 267.3102, 318.9369, 351.1229, 360.2048, 323.5128, 305.6385,
        240.4460, 515.4230, 347.8708
    ],
                          [
                              381.8694, 273.6327, 299.6685, 331.0925, 328.7724,
                              372.0096, 411.0972, 314.7053, 517.7299, 268.4953
                          ],
                          [
                              284.8728, 275.7985, 374.0677, 320.4990, 395.4019,
                              275.4633, 306.2896, 231.4310, 507.0849, 312.4057
                          ],
                          [
                              313.1638, 271.4258, 405.0255, 312.2325, 424.7874,
                              266.3525, 333.6973, 225.7708, 510.1232, 305.3802
                          ],
                          [
                              308.6859, 270.9629, 394.2789, 323.2781, 419.7905,
                              280.1602, 333.8901, 228.1624, 519.1964, 321.5318
                          ],
                          [
                              386.8067, 284.8947, 294.2467, 323.2223, 313.3221,
                              368.9970, 405.9415, 330.9298, 495.9970, 268.9920
                          ],
                          [
                              432.0219, 299.6021, 340.8581, 339.4676, 360.2354,
                              384.5515, 451.4394, 345.2190, 514.6357, 291.2043
                          ],
                          [
                              351.3389, 264.5325, 267.5279, 318.2321, 293.7460,
                              360.0423, 378.4428, 306.9586, 516.4390, 259.7810
                          ],
                          [
                              521.1902, 254.0693, 492.7884, 349.7861, 539.6320,
                              364.5190, 569.2258, 268.8824, 506.9431, 286.9752
                          ],
                          [
                              264.8554, 275.9547, 338.1317, 345.3435, 372.7012,
                              308.4648, 299.3454, 239.9245, 506.2117, 373.8413
                          ]])

    for mpc_idx in range(config['mpc']['num_episodes']):
        if keypoint_observation:
            mpc_episode_keypoint_observation(config,
                                             mpc_idx,
                                             model_dy,
                                             mpc_dir,
                                             planner,
                                             obs_goals[mpc_idx],
                                             action_function,
                                             observation_function,
                                             use_gpu=use_gpu)
        else:
            # not supported for now
            raise AssertionError("currently only support keypoint observation")
Example #15
0
def main():
    # load dynamics model
    model_dict = load_model_state_dict()
    model = model_dict['model_dy']
    model_dd = model_dict['model_dd']
    config = model.config

    env_config = load_yaml(
        os.path.join(get_project_root(),
                     'experiments/exp_18_box_on_side/config.yaml'))
    env_config['env']['observation']['depth_int16'] = True

    n_history = config['train']['n_history']

    # enable the right observations

    camera_name = model_dict['metadata']['camera_name']
    spatial_descriptor_data = model_dict['spatial_descriptor_data']
    ref_descriptors = spatial_descriptor_data['spatial_descriptors']
    K = ref_descriptors.shape[0]

    ref_descriptors = torch.Tensor(
        ref_descriptors).cuda()  # put them on the GPU

    print("ref_descriptors\n", ref_descriptors)
    print("ref_descriptors.shape", ref_descriptors.shape)

    # create the environment
    # create the environment
    env = DrakePusherSliderEnv(env_config)
    env.reset()

    T_world_camera = env.camera_pose(camera_name)
    camera_K_matrix = env.camera_K_matrix(camera_name)

    # create another environment for doing rollouts
    env2 = DrakePusherSliderEnv(env_config, visualize=False)
    env2.reset()

    action_function = ActionFunctionFactory.function_from_config(config)
    observation_function = ObservationFunctionFactory.drake_pusher_position_3D(
        config)
    visual_observation_function = \
        VisualObservationFunctionFactory.descriptor_keypoints_3D(config=config,
                                                                 camera_name=camera_name,
                                                                 model_dd=model_dd,
                                                                 ref_descriptors=ref_descriptors,
                                                                 K_matrix=camera_K_matrix,
                                                                 T_world_camera=T_world_camera,
                                                                 )

    episode = OnlineEpisodeReader()
    mpc_input_builder = DynamicsModelInputBuilder(
        observation_function=observation_function,
        visual_observation_function=visual_observation_function,
        action_function=action_function,
        episode=episode)

    vis = meshcat_utils.make_default_visualizer_object()
    vis.delete()

    initial_cond = get_initial_state()
    reset_environment(env, initial_cond['q_pusher'], initial_cond['q_slider'])
    obs_init = env.get_observation()

    #### ROLLOUT USING LEARNED MODEL + GROUND TRUTH ACTIONS ############
    reset_environment(env, initial_cond['q_pusher'], initial_cond['q_slider'])
    # add just some large number of these
    episode.clear()
    for i in range(n_history):
        action_zero = np.zeros(2)
        obs_tmp = env.get_observation()
        episode.add_observation_action(obs_tmp, action_zero)

    def goal_func(obs_tmp):
        state_tmp = mpc_input_builder.get_state_input_single_timestep(
            {'observation': obs_tmp})['state']
        return model.compute_z_state(
            state_tmp.unsqueeze(0))['z_object'].flatten()

    #
    idx = episode.get_latest_idx()
    obs_raw = episode.get_observation(idx)
    z_object_goal = goal_func(obs_raw)
    z_keypoints_init_W = keypoints_3D_from_dynamics_model_output(
        z_object_goal, K)
    z_keypoints_init_W = torch_utils.cast_to_numpy(z_keypoints_init_W)

    z_keypoints_obj = keypoints_world_frame_to_object_frame(
        z_keypoints_init_W, T_W_obj=slider_pose_from_observation(obs_init))

    # keypoints_W
    # color = [1, 0, 0]
    # meshcat_utils.visualize_points(vis=vis,
    #                                name="keypoints_W",
    #                                pts=z_keypoints_init_W,
    #                                color=color,
    #                                size=0.02,
    #                                )

    # rollout single action sequence using the simulator
    gt_rollout_data = env_utils.rollout_action_sequence(
        env, initial_cond['action_sequence'].cpu().numpy())
    env_obs_rollout_gt = gt_rollout_data['observations']
    gt_rollout_episode = gt_rollout_data['episode_reader']

    action_state_gt = mpc_input_builder.get_action_state_tensors(
        start_idx=0, num_timesteps=N, episode=gt_rollout_episode)

    state_rollout_gt = action_state_gt['states']
    action_rollout_gt = action_state_gt['actions']
    z_object_rollout_gt = model.compute_z_state(
        state_rollout_gt)['z_object_flat']
    print('state_rollout_gt.shape', state_rollout_gt.shape)
    print("z_object_rollout_gt.shape", z_object_rollout_gt.shape)

    # using the vision model to get "goal" keypoints
    z_object_goal = goal_func(env_obs_rollout_gt[-1])
    z_object_goal_np = torch_utils.cast_to_numpy(z_object_goal)
    z_keypoints_goal = keypoints_3D_from_dynamics_model_output(
        z_object_goal, K)
    z_keypoints_goal = torch_utils.cast_to_numpy(z_keypoints_goal)

    # visualize goal keypoints
    # color = [0, 1, 0]
    # meshcat_utils.visualize_points(vis=vis,
    #                                name="goal_keypoints",
    #                                pts=z_keypoints_goal,
    #                                color=color,
    #                                size=0.02,
    #                                )

    # input("press Enter to continue")

    #### ROLLOUT USING LEARNED MODEL + GROUND TRUTH ACTIONS ############
    reset_environment(env, initial_cond['q_pusher'], initial_cond['q_slider'])
    # add just some large number of these
    episode.clear()
    for i in range(n_history):
        action_zero = np.zeros(2)
        obs_tmp = env.get_observation()
        episode.add_observation_action(obs_tmp, action_zero)

    # [n_history, state_dim]
    idx = episode.get_latest_idx()

    dyna_net_input = mpc_input_builder.get_dynamics_model_input(
        idx, n_history=n_history)
    state_init = dyna_net_input['states'].cuda()  # [n_history, state_dim]
    action_init = dyna_net_input['actions']  # [n_history, action_dim]

    print("state_init.shape", state_init.shape)
    print("action_init.shape", action_init.shape)

    action_seq_gt_torch = initial_cond['action_sequence']
    action_input = torch.cat(
        (action_init[:(n_history - 1)], action_seq_gt_torch), dim=0).cuda()
    print("action_input.shape", action_input.shape)

    # rollout using the ground truth actions and learned model
    # need to add the batch dim to do that
    z_init = model.compute_z_state(state_init)['z']
    rollout_pred = rollout_model(state_init=z_init.unsqueeze(0),
                                 action_seq=action_input.unsqueeze(0),
                                 dynamics_net=model,
                                 compute_debug_data=True)

    state_pred_rollout = rollout_pred['state_pred']

    print("state_pred_rollout.shape", state_pred_rollout.shape)

    for i in range(N):
        # vis GT for now
        name = "GT_3D/%d" % (i)
        T_W_obj = slider_pose_from_observation(env_obs_rollout_gt[i])
        # print("T_W_obj", T_W_obj)

        # green
        color = np.array([0, 1, 0]) * get_color_intensity(i, N)
        meshcat_utils.visualize_points(vis=vis,
                                       name=name,
                                       pts=z_keypoints_obj,
                                       color=color,
                                       size=0.01,
                                       T=T_W_obj)

        # red
        color = np.array([0, 0, 1]) * get_color_intensity(i, N)
        state_pred = state_pred_rollout[:, i, :]
        pts_pred = keypoints_3D_from_dynamics_model_output(state_pred,
                                                           K).squeeze()
        pts_pred = pts_pred.detach().cpu().numpy()
        name = "pred_3D/%d" % (i)
        meshcat_utils.visualize_points(
            vis=vis,
            name=name,
            pts=pts_pred,
            color=color,
            size=0.01,
        )

    # input("finished visualizing GT rollout\npress Enter to continue")
    index_dict = get_object_and_robot_state_indices(config)
    object_indices = index_dict['object_indices']

    # reset the environment and use the MPC controller to stabilize this
    # now setup the MPC to try to stabilize this . . . .
    reset_environment(env, initial_cond['q_pusher'], initial_cond['q_slider'])
    episode.clear()

    # add just some large number of these
    for i in range(n_history):
        action_zero = np.zeros(2)
        obs_tmp = env.get_observation()
        episode.add_observation_action(obs_tmp, action_zero)

    input("press Enter to continue")

    # make a planner config
    planner_config = copy.copy(config)
    config_tmp = load_yaml(
        os.path.join(get_project_root(),
                     'experiments/drake_pusher_slider/eval_config.yaml'))
    planner_config['mpc'] = config_tmp['mpc']

    planner_config['mpc']['mppi']['terminal_cost_only'] = TERMINAL_COST_ONLY
    planner_config['mpc']['random_shooting'][
        'terminal_cost_only'] = TERMINAL_COST_ONLY

    planner = None
    if PLANNER_TYPE == "random_shooting":
        planner = RandomShootingPlanner(planner_config)
    elif PLANNER_TYPE == "mppi":
        planner = PlannerMPPI(planner_config)
    else:
        raise ValueError("unknown planner type: %s" % (PLANNER_TYPE))

    mpc_out = None
    action_seq_mpc = None
    state_pred_mpc = None
    counter = -1
    while True:
        counter += 1
        print("\n\n-----Running MPC Optimization: Counter (%d)-------" %
              (counter))

        obs_cur = env.get_observation()
        episode.add_observation_only(obs_cur)

        if counter == 0 or REPLAN:
            print("replanning")
            ####### Run the MPC ##########

            # [1, state_dim]

            n_look_ahead = N - counter
            if USE_FIXED_MPC_HORIZON:
                n_look_ahead = MPC_HORIZON
            elif USE_SHORT_HORIZON_MPC:
                n_look_ahead = min(MPC_HORIZON, N - counter)
            if n_look_ahead == 0:
                break

            start_idx = counter
            end_idx = counter + n_look_ahead

            print("start_idx:", start_idx)
            print("end_idx:", end_idx)

            # start_time = time.time()
            # idx of current observation
            idx = episode.get_latest_idx()
            mpc_start_time = time.time()
            mpc_input_data = mpc_input_builder.get_dynamics_model_input(
                idx, n_history=n_history)
            state_cur = mpc_input_data['states']
            action_his = mpc_input_data['actions']

            if SEED_WITH_NOMINAL_ACTIONS:
                action_seq_rollout_init = action_seq_gt_torch[
                    start_idx:end_idx]
            else:
                if mpc_out is not None:
                    action_seq_rollout_init = mpc_out['action_seq'][1:]
                    print("action_seq_rollout_init.shape",
                          action_seq_rollout_init.shape)

                    if action_seq_rollout_init.shape[0] < n_look_ahead:
                        num_steps = n_look_ahead - action_seq_rollout_init.shape[
                            0]
                        action_seq_zero = torch.zeros([num_steps, 2])

                        action_seq_rollout_init = torch.cat(
                            (action_seq_rollout_init, action_seq_zero), dim=0)
                        print("action_seq_rollout_init.shape",
                              action_seq_rollout_init.shape)
                else:
                    action_seq_rollout_init = None

            # run MPPI
            z_cur = None
            with torch.no_grad():
                z_cur = model.compute_z_state(
                    state_cur.unsqueeze(0).cuda())['z'].squeeze(0)

            if action_seq_rollout_init is not None:
                n_look_ahead = action_seq_rollout_init.shape[0]

            obs_goal = None
            print("z_object_rollout_gt.shape", z_object_rollout_gt.shape)
            if TRAJECTORY_GOAL:
                obs_goal = z_object_rollout_gt[start_idx:end_idx]

                print("n_look_ahead", n_look_ahead)
                print("obs_goal.shape", obs_goal.shape)

                # add the final goal state on as needed
                if obs_goal.shape[0] < n_look_ahead:
                    obs_goal_final = z_object_rollout_gt[-1].unsqueeze(0)
                    num_repeat = n_look_ahead - obs_goal.shape[0]
                    obs_goal_final_expand = obs_goal_final.expand(
                        [num_repeat, -1])
                    obs_goal = torch.cat((obs_goal, obs_goal_final_expand),
                                         dim=0)
            else:
                obs_goal = z_object_rollout_gt[-1]

            obs_goal = torch_utils.cast_to_numpy(obs_goal)
            print("obs_goal.shape", obs_goal.shape)

            seed = 1

            set_seed(seed)
            mpc_out = planner.trajectory_optimization(
                state_cur=z_cur,
                action_his=action_his,
                obs_goal=obs_goal,
                model_dy=model,
                action_seq_rollout_init=action_seq_rollout_init,
                n_look_ahead=n_look_ahead,
                eval_indices=object_indices,
                rollout_best_action_sequence=True,
                verbose=True,
                add_grid_action_samples=True,
            )

            print("MPC step took %.4f seconds" %
                  (time.time() - mpc_start_time))
            action_seq_mpc = mpc_out['action_seq'].cpu().numpy()

        # Rollout with ground truth simulator dynamics
        action_seq_mpc = torch_utils.cast_to_numpy(mpc_out['action_seq'])
        env2.set_simulator_state_from_observation_dict(
            env2.get_mutable_context(), obs_cur)
        obs_mpc_gt = env_utils.rollout_action_sequence(
            env2, action_seq_mpc)['observations']
        state_pred_mpc = torch_utils.cast_to_numpy(mpc_out['state_pred'])

        vis['mpc_3D'].delete()
        vis['mpc_GT_3D'].delete()

        L = len(obs_mpc_gt)
        print("L", L)
        if L == 0:
            break
        for i in range(L):
            # red
            color = np.array([1, 0, 0]) * get_color_intensity(i, L)
            state_pred = state_pred_mpc[i, :]
            state_pred = np.expand_dims(state_pred,
                                        0)  # may need to expand dims here
            pts_pred = keypoints_3D_from_dynamics_model_output(state_pred,
                                                               K).squeeze()
            name = "mpc_3D/%d" % (i)
            meshcat_utils.visualize_points(
                vis=vis,
                name=name,
                pts=pts_pred,
                color=color,
                size=0.01,
            )

            # ground truth rollout of the MPC action_seq
            name = "mpc_GT_3D/%d" % (i)
            T_W_obj = slider_pose_from_observation(obs_mpc_gt[i])

            # green
            color = np.array([1, 1, 0]) * get_color_intensity(i, L)
            meshcat_utils.visualize_points(vis=vis,
                                           name=name,
                                           pts=z_keypoints_obj,
                                           color=color,
                                           size=0.01,
                                           T=T_W_obj)

        action_cur = action_seq_mpc[0]

        print("action_cur", action_cur)
        print("action_GT", initial_cond['action'])
        input("press Enter to continue")

        # add observation actions to the episode
        obs_cur = env.get_observation()
        episode.replace_observation_action(obs_cur, action_cur)

        # step the simulator
        env.step(action_cur)

        # visualize current keypoint positions
        obs_cur = env.get_observation()
        T_W_obj = slider_pose_from_observation(obs_cur)

        # yellow
        color = np.array([1, 1, 0])
        meshcat_utils.visualize_points(vis=vis,
                                       name="keypoint_cur",
                                       pts=z_keypoints_obj,
                                       color=color,
                                       size=0.02,
                                       T=T_W_obj)

        action_seq_mpc = action_seq_mpc[1:]
        state_pred_mpc = state_pred_mpc[1:]

        pose_error = compute_pose_error(env_obs_rollout_gt[-1], obs_cur)

        print("position_error: %.3f" % (pose_error['position_error']))
        print("angle error degrees: %.3f" %
              (pose_error['angle_error_degrees']))

    obs_final = env.get_observation()

    pose_error = compute_pose_error(env_obs_rollout_gt[-1], obs_final)

    print("position_error: %.3f" % (pose_error['position_error']))
    print("angle error degrees: %.3f" % (pose_error['angle_error_degrees']))
Example #16
0
def eval_dynamics(config,
                  train_dir,
                  eval_dir,
                  state_dict_path=None,
                  keypoint_observation=False,
                  debug=False,
                  render_human=False):

    # set random seed for reproduction
    set_seed(config['train']['random_seed'])

    tee = Tee(os.path.join(eval_dir, 'eval.log'), 'w')

    print(config)

    use_gpu = torch.cuda.is_available()
    '''
    model
    '''
    model_dy = DynaNetMLP(config)

    # print model #params
    print("model #params: %d" % count_trainable_parameters(model_dy))

    if state_dict_path is None:
        if config['eval']['eval_dy_epoch'] == -1:
            state_dict_path = os.path.join(train_dir, 'net_best_dy.pth')
        else:
            state_dict_path = os.path.join(
                train_dir, 'net_dy_epoch_%d_iter_%d.pth' % \
                (config['eval']['eval_dy_epoch'], config['eval']['eval_dy_iter']))

        print("Loading saved ckp from %s" % state_dict_path)

    model_dy.load_state_dict(torch.load(state_dict_path))
    model_dy.eval()

    if use_gpu:
        model_dy.cuda()

    criterionMSE = nn.MSELoss()
    bar = ProgressBar()

    st_idx = config['eval']['eval_st_idx']
    ed_idx = config['eval']['eval_ed_idx']

    # load the data
    episodes = load_episodes_from_config(config)

    # generate action/observation functions
    action_function = ActionFunctionFactory.function_from_config(config)
    observation_function = ObservationFunctionFactory.function_from_config(
        config)

    dataset = MultiEpisodeDataset(config,
                                  action_function=action_function,
                                  observation_function=observation_function,
                                  episodes=episodes,
                                  phase="valid")

    episode_names = dataset.get_episode_names()
    episode_names.sort()

    num_episodes = None
    # for backwards compatibility
    if "num_episodes" in config["eval"]:
        num_episodes = config["eval"]["num_episodes"]
    else:
        num_episodes = 10

    episode_list = []
    if debug:
        episode_list = [episode_names[0]]
    else:
        episode_list = episode_names[:num_episodes]

    for roll_idx, episode_name in enumerate(episode_list):
        print("episode_name", episode_name)
        if keypoint_observation:
            eval_episode_keypoint_observations(config,
                                               dataset,
                                               episode_name,
                                               roll_idx,
                                               model_dy,
                                               eval_dir,
                                               start_idx=9,
                                               n_prediction=30,
                                               render_human=render_human)
        else:
            eval_episode(config,
                         dataset,
                         episode_name,
                         roll_idx,
                         model_dy,
                         eval_dir,
                         start_idx=9,
                         n_prediction=30,
                         render_human=render_human)
Example #17
0
def train_autoencoder(config,
                      train_dir,
                      ckp_dir=None,
                      multi_episode_dict=None,
                      type=None,  # ["SpatialAutoencoder", . . .]
                      ):
    assert multi_episode_dict is not None

    if ckp_dir is None:
        ckp_dir = os.path.join(train_dir, 'checkpoints')

    if not os.path.exists(ckp_dir):
        os.makedirs(ckp_dir)

    tensorboard_dir = os.path.join(train_dir, "tensorboard")
    if not os.path.exists(tensorboard_dir):
        os.makedirs(tensorboard_dir)

    images_dir = os.path.join(train_dir, 'images')
    if not os.path.exists(images_dir):
        os.makedirs(images_dir)

    # save the config
    save_yaml(config, os.path.join(train_dir, 'config.yaml'))

    # set random seed for reproduction
    set_seed(config['train_autoencoder']['random_seed'])
    camera_names = [config['perception']['camera_name']]

    model = None
    image_preprocess_func = None
    if type == "SpatialAutoencoder":
        model = SpatialAutoencoder.from_global_config(config)
        image_preprocess_func = functools.partial(spatial_autoencoder_image_preprocessing,
                                                  H_in=model.input_image_shape[0],
                                                  W_in=model.input_image_shape[1],
                                                  H_out=model.output_image_shape[0],
                                                  W_out=model.output_image_shape[1])
    elif type == "ConvolutionalAutoencoder":
        model = ConvolutionalAutoencoder.from_global_config(config)
        image_preprocess_func = AutoencoderImagePreprocessFunctionFactory.convolutional_autoencoder(config)
    else:
        raise ValueError("unknown model type: %s" % (type))

    writer = SummaryWriter(log_dir=tensorboard_dir)

    # only use images from this specific config

    ### data
    datasets = {}
    dataloaders = {}
    for phase in ['train', 'valid']:
        datasets[phase] = AutoencoderImageDataset(config,
                                                  phase=phase,
                                                  episodes=multi_episode_dict,
                                                  camera_names=camera_names,
                                                  image_preprocess_func=image_preprocess_func)

        dataloaders[phase] = DataLoader(
            datasets[phase], batch_size=config['train_autoencoder']['batch_size'],
            shuffle=True if phase == 'train' else False,
            num_workers=config['train_autoencoder']['batch_size'])

    use_gpu = torch.cuda.is_available()

    params = model.parameters()
    optimizer = optim.Adam(
        params, lr=float(config['train_autoencoder']['lr']),
        betas=(config['train_autoencoder']['adam_beta1'], 0.999))

    scheduler = None
    if config['train_autoencoder']['lr_scheduler']['enabled']:
        scheduler = ReduceLROnPlateau(
            optimizer, 'min', factor=0.6, patience=2, verbose=True)

    if use_gpu:
        model = model.cuda()

    best_valid_loss = np.inf
    global_iteration = 0
    log_fout = open(os.path.join(ckp_dir, 'log.txt'), 'w')

    # criterion
    criterionMSE = nn.MSELoss()


    # a little test
    if False:
        data = datasets['train'][0]
        print(data.keys())

        print("data['target_tensor'].shape", data['target_tensor'].shape)
        print("data['target_mask'].shape", data['target_mask'].shape)
        fig = plt.figure()
        ax = fig.subplots(2)
        target_img = data['target']
        print("target_img.dtype", target_img.dtype)
        ax[0].imshow(data['input'])
        ax[1].imshow(data['target'], cmap='gray', vmin=0, vmax=255)
        plt.show()

        quit()

    # a little test
    if False:
        data = datasets['train'][0]
        print(data.keys())

        print("data['target_tensor'].shape", data['target_tensor'].shape)
        print("data['target_mask'].shape", data['target_mask'].shape)
        fig = plt.figure()
        ax = fig.subplots(2)
        target_img = data['target']
        target_tensor = data['target_tensor'].unsqueeze(0)
        target_tensor_np = torch_utils.convert_torch_image_to_numpy(target_tensor).squeeze()
        print("target_img.dtype", target_img.dtype)
        ax[0].imshow(target_img)
        ax[1].imshow(target_tensor_np)
        plt.show()

        quit()

    counters = {'train': 0, 'valid': 0}


    n_epoch = config['train_autoencoder']['n_epoch']
    for epoch in range(n_epoch):
        phases = ['train', 'valid']

        writer.add_scalar("Training Params/epoch", epoch, global_iteration)

        for phase in phases:
            model.train(phase == 'train')

            meter_loss = AverageMeter()

            loader = dataloaders[phase]
            bar = ProgressBar(max_value=len(loader))

            step_duration_meter = AverageMeter()
            epoch_start_time = time.time()
            prev_time = time.time()
            print("\n\n")
            for i, data in bar(enumerate(loader)):
                loss_container = dict() # store the losses for this step
                counters[phase] += 1

                with torch.set_grad_enabled(phase == 'train'):
                    input = data['input_tensor']
                    target = data['target_tensor']

                    if use_gpu:
                        input = input.cuda()
                        target = target.cuda()

                    out = model(input)
                    target_pred = out['output']

                    # print("target.shape", target.shape)
                    # print("target_pred.shape", target_pred.shape)

                    # reconstruction loss
                    l2_recon = criterionMSE(target, target_pred)
                    loss_container['l2_recon'] = l2_recon


                    # loss_masked
                    # [B, H', W']
                    mask = data['target_mask'].to(target.device)
                    mask_idx = mask > 0

                    # convert to BHWC ordering so we can directly index
                    target_masked = target.permute(0, 2, 3, 1)[mask_idx]
                    target_pred_masked = target_pred.permute(0, 2, 3, 1)[mask_idx]

                    # print('target_masked.shape', target_masked.shape)
                    # print("target_pred_masked.shape", target_pred_masked.shape)
                    l2_recon_masked = criterionMSE(target_masked, target_pred_masked)

                    loss_container['l2_recon_masked'] = l2_recon_masked

                    # compute the loss
                    loss = 0
                    for key, val in config['train_autoencoder']['loss_function'].items():
                        if val['enabled']:
                            loss += loss_container[key] * val['weight']

                    meter_loss.update(loss.item())

                step_duration_meter.update(time.time() - prev_time)
                prev_time = time.time()

                if phase == 'train':
                    optimizer.zero_grad()
                    loss.backward()
                    nn.utils.clip_grad_norm_(params, 1)
                    optimizer.step()

                if global_iteration > 100:
                    writer.add_scalar("Params/learning rate", get_lr(optimizer), global_iteration)
                    # writer.add_scalar("Loss/%s" % (phase), loss.item(), global_iteration)

                    writer.add_scalar("Loss_train/%s" % (phase), loss.item(), counters[phase])

                    for loss_type, loss_obj in loss_container.items():
                        plot_name = "Loss/%s/%s" % (loss_type, phase)
                        writer.add_scalar(plot_name, loss_obj.item(), counters[phase])

                if i % config['train_autoencoder']['log_per_iter'] == 0:
                    log = '%s [%d/%d][%d/%d] LR: %.6f, Loss: %.6f (%.6f)' % (
                        phase, epoch, n_epoch, i, len(loader), get_lr(optimizer),
                        loss.item(), meter_loss.avg)

                    log += ', step time %.6f' % (step_duration_meter.avg)
                    step_duration_meter.reset()

                    print(log)

                    log_fout.write(log + '\n')
                    log_fout.flush()

                if phase == 'train' and i % config['train_autoencoder']['ckp_per_iter'] == 0:
                    torch.save(
                        model.state_dict(),
                        '%s/net_kp_epoch_%d_iter_%d.pth' % (ckp_dir, epoch, i))

                if i % config['train_autoencoder']['img_save_per_iter'] == 0:

                    nrows = 4
                    ncols = 2
                    fig_width = 5

                    B, _, H, W = target.shape
                    fig_height = fig_width * ((nrows * H) / (ncols * W))
                    figsize = (fig_width, fig_height)
                    fig = plt.figure(figsize=figsize)

                    ax = fig.subplots(nrows=nrows, ncols=ncols)

                    target_np = torch_utils.convert_torch_image_to_numpy(target)
                    target_pred_np = torch_utils.convert_torch_image_to_numpy(target_pred)

                    for n in range(nrows):
                        ax[n, 0].imshow(target_np[n])
                        ax[n, 1].imshow(target_pred_np[n])

                    save_file = os.path.join(images_dir,
                                             '%s_epoch_%d_iter_%d.png' %(phase, epoch, i))

                    fig.savefig(save_file)
                    plt.close(fig)


                writer.flush()  # flush SummaryWriter events to disk
                global_iteration += 1

            log = '%s [%d/%d] Loss: %.6f, Best valid: %.6f' % (
                phase, epoch, n_epoch, meter_loss.avg, best_valid_loss)
            print(log)
            print("Epoch Duration:", time.time() - epoch_start_time)
            log_fout.write(log + '\n')
            log_fout.flush()

            if phase == 'valid':
                if scheduler is not None:
                    scheduler.step(meter_loss.avg)
                if meter_loss.avg < best_valid_loss:
                    best_valid_loss = meter_loss.avg

                    torch.save(model.state_dict(), '%s/net_best.pth' % ckp_dir)

    log_fout.close()
def train_transporter(
    config,
    train_dir,
    ckp_dir=None,
    multi_episode_dict=None,
):

    assert multi_episode_dict is not None

    if ckp_dir is None:
        ckp_dir = os.path.join(train_dir)

    if not os.path.exists(ckp_dir):
        os.makedirs(ckp_dir)

    tensorboard_dir = os.path.join(train_dir, "tensorboard")
    if not os.path.exists(tensorboard_dir):
        os.makedirs(tensorboard_dir)

    images_dir = os.path.join(train_dir, 'images')
    if not os.path.exists(images_dir):
        os.makedirs(images_dir)

    # save the config
    save_yaml(config, os.path.join(train_dir, 'config.yaml'))

    # set random seed for reproduction
    set_seed(config['train_transporter']['random_seed'])

    writer = SummaryWriter(log_dir=tensorboard_dir)

    # only use images from this specific config
    camera_names = [config['perception']['camera_name']]

    ### data
    datasets = {}
    dataloaders = {}
    for phase in ['train', 'valid']:
        datasets[phase] = ImageTupleDataset(config,
                                            phase=phase,
                                            episodes=multi_episode_dict,
                                            tuple_size=2,
                                            camera_names=camera_names)

        dataloaders[phase] = DataLoader(
            datasets[phase],
            batch_size=config['train_transporter']['batch_size'],
            shuffle=True if phase == 'train' else False,
            num_workers=config['train_transporter']['batch_size'])

    use_gpu = torch.cuda.is_available()

    crop_enabled = datasets['train'].crop_enabled
    rgb_tensor_key = None
    if crop_enabled:
        rgb_image_key = "rgb_crop"
        rgb_tensor_key = "rgb_crop_tensor"
    else:
        rgb_image_key = "rgb_masked_scaled"
        rgb_tensor_key = "rgb_masked_scaled_tensor"

    if False:
        dataset = datasets["train"]

        dataset_size = len(dataset)
        print("len(dataset)", len(dataset))
        print("len(dataset._image_dataset)", len(dataset._image_dataset))

        print("len(dataset['valid'])", len(datasets['valid']))
        print("len(dataset['train'])", len(datasets['train']))

        print("dataset.crop_enabled", dataset.crop_enabled)

        data = dataset[0]
        print("data.keys()", data.keys())
        print("data[0].keys()", data[0].keys())

        # rgb_crop_tensor = data[0]['rgb_crop_tensor']
        # print("rgb_crop_tensor.max()", rgb_crop_tensor.max())
        # print("rgb_crop_tensor.min()", rgb_crop_tensor.min())
        #
        # rgb_image = data[0]['rgb_masked_scaled']
        # print("rgb_crop.dtype", rgb_image.dtype)
        # print("rgb_image.shape", rgb_image.shape)

        rgb_image = data[0][rgb_image_key]
        rgb_tensor = data[0][rgb_tensor_key]
        print("rgb_image.shape", rgb_image.shape)
        print("rgb_tensor.shape", rgb_tensor.shape)

        plt.figure()
        # plt.imshow(rgb_image)
        plt.imshow(data[0][rgb_image_key])
        plt.show()
        quit()
        #

    ### model
    model_kp = Transporter(config, use_gpu=use_gpu)
    print("model_kp #params: %d" % count_parameters(model_kp))

    if config['train_transporter']['resume_epoch'] >= 0:
        model_kp_path = os.path.join(
            ckp_dir, 'net_kp_epoch_%d_iter_%d.pth' %
            (config['train_transporter']['resume_epoch'],
             config['train_transporter']['resume_iter']))
        print("Loading saved ckp from %s" % model_kp_path)
        model_kp.load_state_dict(torch.load(model_kp_path))

    # criterion
    criterionMSE = nn.MSELoss()

    # optimizer
    params = model_kp.parameters()
    optimizer = optim.Adam(params,
                           lr=float(config['train_transporter']['lr']),
                           betas=(config['train_transporter']['adam_beta1'],
                                  0.999))
    scheduler = ReduceLROnPlateau(optimizer,
                                  'min',
                                  factor=0.6,
                                  patience=2,
                                  verbose=True)

    if use_gpu:
        model_kp = model_kp.cuda()

    best_valid_loss = np.inf
    global_iteration = 0
    log_fout = open(os.path.join(ckp_dir, 'log.txt'), 'w')

    n_epoch = config['train_transporter']['n_epoch']
    for epoch in range(n_epoch):
        phases = ['train', 'valid']

        writer.add_scalar("Training Params/epoch", epoch, global_iteration)

        for phase in phases:
            model_kp.train(phase == 'train')

            meter_loss = AverageMeter()

            loader = dataloaders[phase]
            bar = ProgressBar(max_value=len(loader))

            for i, data in bar(enumerate(loader)):

                with torch.set_grad_enabled(phase == 'train'):
                    src = data[0][rgb_tensor_key]
                    des = data[1][rgb_tensor_key]

                    if use_gpu:
                        src = src.cuda()
                        des = des.cuda()

                    des_pred = model_kp(src, des)

                    # reconstruction loss
                    loss = criterionMSE(des_pred, des)
                    meter_loss.update(loss.item(), src.size(0))

                if phase == 'train':
                    optimizer.zero_grad()
                    loss.backward()
                    optimizer.step()

                if global_iteration > 100:
                    writer.add_scalar("Params/learning rate",
                                      get_lr(optimizer), global_iteration)
                    writer.add_scalar("Loss/%s" % (phase), loss.item(),
                                      global_iteration)

                if i % config['train_transporter']['log_per_iter'] == 0:
                    log = '%s [%d/%d][%d/%d] LR: %.6f, Loss: %.6f (%.6f)' % (
                        phase, epoch, n_epoch, i, len(loader),
                        get_lr(optimizer), loss.item(), meter_loss.avg)

                    print()
                    print(log)

                    log_fout.write(log + '\n')
                    log_fout.flush()

                if phase == 'train' and i % config['train_transporter'][
                        'ckp_per_iter'] == 0:
                    torch.save(
                        model_kp.state_dict(),
                        '%s/net_kp_epoch_%d_iter_%d.pth' % (ckp_dir, epoch, i))

                # compute some images and draw them
                if global_iteration % config['train_transporter'][
                        'image_per_iter'] == 0:
                    with torch.no_grad():
                        kp = model_kp.predict_keypoint(des)
                        heatmap = model_kp.keypoint_to_heatmap(
                            kp, inv_std=config['perception']['inv_std'])

                        images = visualize_transporter_output(
                            des=des, des_pred=des_pred, heatmap=heatmap, kp=kp)

                        print("images[0].shape", images[0].shape)

                        save_img = np.concatenate(images[:4], axis=0)
                        print("save_img.dtype", save_img.dtype)
                        print("save_img.shape", save_img.shape)

                        save_file = os.path.join(
                            images_dir,
                            '%s_epoch_%d_iter_%d.png' % (phase, epoch, i))
                        cv2.imwrite(save_file, save_img)

                    pass

                writer.flush()  # flush SummaryWriter events to disk
                global_iteration += 1

            log = '%s [%d/%d] Loss: %.6f, Best valid: %.6f' % (
                phase, epoch, n_epoch, meter_loss.avg, best_valid_loss)
            print(log)
            log_fout.write(log + '\n')
            log_fout.flush()

            if phase == 'valid':
                scheduler.step(meter_loss.avg)
                if meter_loss.avg < best_valid_loss:
                    best_valid_loss = meter_loss.avg

                    torch.save(model_kp.state_dict(),
                               '%s/net_best.pth' % ckp_dir)

    log_fout.close()
def train_dynamics(config, data_path, train_dir):

    # access dict values as attributes
    config = edict(config)

    # set random seed for reproduction
    set_seed(config.train.random_seed)

    st_epoch = config.train.resume_epoch if config.train.resume_epoch > 0 else 0
    tee = Tee(os.path.join(train_dir, 'train_st_epoch_%d.log' % st_epoch), 'w')

    print(config)

    datasets = {}
    dataloaders = {}
    data_n_batches = {}
    for phase in ['train', 'valid']:
        print("Loading data for %s" % phase)
        datasets[phase] = MultiEpisodeDataset(config, data_path, phase=phase)

        dataloaders[phase] = DataLoader(
            datasets[phase], batch_size=config.train.batch_size,
            shuffle=True if phase == 'train' else False,
            num_workers=config.train.num_workers)

        data_n_batches[phase] = len(dataloaders[phase])

    use_gpu = torch.cuda.is_available()


    '''
    define model for dynamics prediction
    '''
    model_dy = DynaNetMLP(config)
    print("model_dy #params: %d" % count_trainable_parameters(model_dy))

    if config.train.resume_epoch >= 0:
        # if resume from a pretrained checkpoint
        model_dy_path = os.path.join(
            train_dir, 'net_dy_epoch_%d_iter_%d.pth' % (
                config.train.resume_epoch, config.train.resume_iter))
        print("Loading saved ckp from %s" % model_dy_path)
        model_dy.load_state_dict(torch.load(model_dy_path))


    # criterion
    criterionMSE = nn.MSELoss()

    # optimizer
    params = model_dy.parameters()
    optimizer = optim.Adam(params, lr=config.train.lr, betas=(config.train.adam_beta1, 0.999))
    scheduler = ReduceLROnPlateau(optimizer, 'min', factor=0.9, patience=10, verbose=True)

    if use_gpu:
        model_dy = model_dy.cuda()


    best_valid_loss = np.inf

    for epoch in range(st_epoch, config.train.n_epoch):
        phases = ['train', 'valid']

        for phase in phases:
            model_dy.train(phase == 'train')

            meter_loss_rmse = AverageMeter()

            bar = ProgressBar(max_value=data_n_batches[phase])
            loader = dataloaders[phase]

            for i, data in bar(enumerate(loader)):

                if use_gpu:
                    if isinstance(data, list):
                        data = [d.cuda() for d in data]
                    else:
                        data = data.cuda()

                with torch.set_grad_enabled(phase == 'train'):
                    n_his, n_roll = config.train.n_history, config.train.n_rollout
                    n_samples = n_his + n_roll

                    if config.env.type in ['PusherSlider']:
                        states, actions = data
                        assert states.size(1) == n_samples

                        B = states.size(0)
                        loss_mse = 0.

                        # state_cur: B x n_his x state_dim
                        state_cur = states[:, :n_his]

                        for j in range(n_roll):

                            state_des = states[:, n_his + j]

                            # action_cur: B x n_his x action_dim
                            action_cur = actions[:, j : j + n_his] if actions is not None else None

                            # state_pred: B x state_dim
                            state_pred = model_dy(state_cur, action_cur)

                            loss_mse_cur = criterionMSE(state_pred, state_des)
                            loss_mse += loss_mse_cur / config.train.n_rollout

                            # update state_cur
                            state_cur = torch.cat([state_cur[:, 1:], state_pred.unsqueeze(1)], 1)

                        meter_loss_rmse.update(np.sqrt(loss_mse.item()), B)

                if phase == 'train':
                    optimizer.zero_grad()
                    loss_mse.backward()
                    optimizer.step()

                if i % config.train.log_per_iter == 0:
                    log = '%s [%d/%d][%d/%d] LR: %.6f' % (
                        phase, epoch, config.train.n_epoch, i, data_n_batches[phase],
                        get_lr(optimizer))
                    log += ', rmse: %.6f (%.6f)' % (
                        np.sqrt(loss_mse.item()), meter_loss_rmse.avg)

                    print(log)

                if phase == 'train' and i % config.train.ckp_per_iter == 0:
                    torch.save(model_dy.state_dict(), '%s/net_dy_epoch_%d_iter_%d.pth' % (train_dir, epoch, i))

            log = '%s [%d/%d] Loss: %.6f, Best valid: %.6f' % (
                phase, epoch, config.train.n_epoch, meter_loss_rmse.avg, best_valid_loss)
            print(log)

            if phase == 'valid':
                scheduler.step(meter_loss_rmse.avg)
                if meter_loss_rmse.avg < best_valid_loss:
                    best_valid_loss = meter_loss_rmse.avg
                    torch.save(model_dy.state_dict(), '%s/net_best_dy.pth' % (train_dir))
Example #20
0
 def f():
     seed = np.random.RandomState().randint(0, 10000)
     # print(np.random.RandomState().randint(0, 10000))
     set_seed(seed)
     print(np.random.rand())
Example #21
0
def train_dynamics(
    config,
    train_dir,  # str: directory to save output
    multi_episode_dict=None,
    spatial_descriptors_idx=None,
    metadata=None,
    spatial_descriptors_data=None,
):

    assert multi_episode_dict is not None
    # assert spatial_descriptors_idx is not None

    # set random seed for reproduction
    set_seed(config['train']['random_seed'])

    st_epoch = config['train'][
        'resume_epoch'] if config['train']['resume_epoch'] > 0 else 0
    tee = Tee(os.path.join(train_dir, 'train_st_epoch_%d.log' % st_epoch), 'w')

    tensorboard_dir = os.path.join(train_dir, "tensorboard")
    if not os.path.exists(tensorboard_dir):
        os.makedirs(tensorboard_dir)

    writer = SummaryWriter(log_dir=tensorboard_dir)

    # save the config
    save_yaml(config, os.path.join(train_dir, "config.yaml"))

    if metadata is not None:
        save_pickle(metadata, os.path.join(train_dir, 'metadata.p'))

    if spatial_descriptors_data is not None:
        save_pickle(spatial_descriptors_data,
                    os.path.join(train_dir, 'spatial_descriptors.p'))

    training_stats = dict()
    training_stats_file = os.path.join(train_dir, 'training_stats.yaml')

    # load the data

    action_function = ActionFunctionFactory.function_from_config(config)
    observation_function = ObservationFunctionFactory.function_from_config(
        config)

    datasets = {}
    dataloaders = {}
    data_n_batches = {}
    for phase in ['train', 'valid']:
        print("Loading data for %s" % phase)
        datasets[phase] = MultiEpisodeDataset(
            config,
            action_function=action_function,
            observation_function=observation_function,
            episodes=multi_episode_dict,
            phase=phase)

        dataloaders[phase] = DataLoader(
            datasets[phase],
            batch_size=config['train']['batch_size'],
            shuffle=True if phase == 'train' else False,
            num_workers=config['train']['num_workers'],
            drop_last=True)

        data_n_batches[phase] = len(dataloaders[phase])

    use_gpu = torch.cuda.is_available()

    # compute normalization parameters if not starting from pre-trained network . . .
    '''
    Build model for dynamics prediction
    '''
    model_dy = build_dynamics_model(config)
    camera_name = config['vision_net']['camera_name']

    # criterion
    criterionMSE = nn.MSELoss()
    l1Loss = nn.L1Loss()
    smoothL1 = nn.SmoothL1Loss()

    # optimizer
    params = model_dy.parameters()
    lr = float(config['train']['lr'])
    optimizer = optim.Adam(params,
                           lr=lr,
                           betas=(config['train']['adam_beta1'], 0.999))

    # setup scheduler
    sc = config['train']['lr_scheduler']
    scheduler = None

    if config['train']['lr_scheduler']['enabled']:
        if config['train']['lr_scheduler']['type'] == "ReduceLROnPlateau":
            scheduler = ReduceLROnPlateau(optimizer,
                                          mode='min',
                                          factor=sc['factor'],
                                          patience=sc['patience'],
                                          threshold_mode=sc['threshold_mode'],
                                          cooldown=sc['cooldown'],
                                          verbose=True)
        elif config['train']['lr_scheduler']['type'] == "StepLR":
            step_size = config['train']['lr_scheduler']['step_size']
            gamma = config['train']['lr_scheduler']['gamma']
            scheduler = StepLR(optimizer, step_size=step_size, gamma=gamma)
        else:
            raise ValueError("unknown scheduler type: %s" %
                             (config['train']['lr_scheduler']['type']))

    if use_gpu:
        print("using gpu")
        model_dy = model_dy.cuda()

    # print("model_dy.vision_net._ref_descriptors.device", model_dy.vision_net._ref_descriptors.device)
    # print("model_dy.vision_net #params: %d" %(count_trainable_parameters(model_dy.vision_net)))

    best_valid_loss = np.inf
    valid_loss_type = config['train']['valid_loss_type']
    global_iteration = 0
    counters = {'train': 0, 'valid': 0}
    epoch_counter_external = 0
    loss = 0

    index_map = get_object_and_robot_state_indices(config)
    object_state_indices = torch.LongTensor(index_map['object_indices'])
    robot_state_indices = torch.LongTensor(index_map['robot_indices'])

    object_state_shape = config['dataset']['object_state_shape']

    try:
        for epoch in range(st_epoch, config['train']['n_epoch']):
            phases = ['train', 'valid']
            epoch_counter_external = epoch

            writer.add_scalar("Training Params/epoch", epoch, global_iteration)
            for phase in phases:

                # only validate at a certain frequency
                if (phase == "valid") and (
                    (epoch % config['train']['valid_frequency']) != 0):
                    continue

                model_dy.train(phase == 'train')

                average_meter_container = dict()

                step_duration_meter = AverageMeter()

                # bar = ProgressBar(max_value=data_n_batches[phase])
                loader = dataloaders[phase]

                for i, data in enumerate(loader):

                    loss_container = dict()  # store the losses for this step

                    step_start_time = time.time()

                    global_iteration += 1
                    counters[phase] += 1

                    with torch.set_grad_enabled(phase == 'train'):
                        n_his, n_roll = config['train']['n_history'], config[
                            'train']['n_rollout']
                        n_samples = n_his + n_roll

                        if DEBUG:
                            print("global iteration: %d" % (global_iteration))
                            print("n_samples", n_samples)

                        # [B, n_samples, obs_dim]
                        observations = data['observations']
                        visual_observations_list = data[
                            'visual_observations_list']

                        # [B, n_samples, action_dim]
                        actions = data['actions']
                        B = actions.shape[0]

                        if use_gpu:
                            observations = observations.cuda()
                            actions = actions.cuda()

                        # compile the visual observations
                        # compute the output of the visual model for all timesteps
                        visual_model_output_list = []
                        for visual_obs in visual_observations_list:
                            # visual_obs is a dict containing observation for a single
                            # time step (of course across a batch however)
                            # visual_obs[<camera_name>]['rgb_tensor'] has shape [B, 3, H, W]

                            # probably need to cast input to cuda
                            # [B, -1, 3]
                            keypoints = visual_obs[camera_name][
                                'descriptor_keypoints_3d_world_frame']

                            # [B, K, 3] where K = len(spatial_descriptors_idx)
                            keypoints = keypoints[:, spatial_descriptors_idx]

                            B, K, _ = keypoints.shape

                            # [B, K*3]
                            keypoints_reshape = keypoints.reshape([B, K * 3])

                            if DEBUG:
                                print("keypoints.shape", keypoints.shape)
                                print("keypoints_reshape.shape",
                                      keypoints_reshape.shape)
                            visual_model_output_list.append(keypoints_reshape)

                        visual_model_output = None
                        if len(visual_model_output_list) > 0:
                            # concatenate this into a tensor
                            # [B, n_samples, vision_model_out_dim]
                            visual_model_output = torch.stack(
                                visual_model_output_list, dim=1)

                        else:
                            visual_model_output = torch.Tensor(
                            )  # empty tensor

                        # states, actions = data
                        assert actions.shape[1] == n_samples

                        # cast this to float so it can be concatenated below
                        visual_model_output = visual_model_output.type_as(
                            observations)

                        # we don't have any visual observations, so states are observations
                        # states is gotten by concatenating visual_observations and observations
                        # [B, n_samples, vision_model_out_dim + obs_dim]
                        states = torch.cat((visual_model_output, observations),
                                           dim=-1)

                        # state_cur: B x n_his x state_dim
                        # state_cur = states[:, :n_his]

                        # [B, n_his, state_dim]
                        state_init = states[:, :n_his]

                        # We want to rollout n_roll steps
                        # actions = [B, n_his + n_roll, -1]
                        # so we want action_seq.shape = [B, n_roll, -1]
                        action_start_idx = 0
                        action_end_idx = n_his + n_roll - 1
                        action_seq = actions[:, action_start_idx:
                                             action_end_idx, :]

                        if DEBUG:
                            print("states.shape", states.shape)
                            print("state_init.shape", state_init.shape)
                            print("actions.shape", actions.shape)
                            print("action_seq.shape", action_seq.shape)

                        # try using models_dy.rollout_model instead of doing this manually
                        rollout_data = rollout_model(state_init=state_init,
                                                     action_seq=action_seq,
                                                     dynamics_net=model_dy,
                                                     compute_debug_data=False)

                        # [B, n_roll, state_dim]
                        state_rollout_pred = rollout_data['state_pred']

                        # [B, n_roll, state_dim]
                        state_rollout_gt = states[:, n_his:]

                        if DEBUG:
                            print("state_rollout_gt.shape",
                                  state_rollout_gt.shape)
                            print("state_rollout_pred.shape",
                                  state_rollout_pred.shape)

                        # the loss function is between
                        # [B, n_roll, state_dim]
                        state_pred_err = state_rollout_pred - state_rollout_gt

                        # [B, n_roll, object_state_dim]
                        object_state_err = state_pred_err[:, :,
                                                          object_state_indices]
                        B, n_roll, object_state_dim = object_state_err.shape

                        # [B, n_roll, *object_state_shape]
                        object_state_err_reshape = object_state_err.reshape(
                            [B, n_roll, *object_state_shape])

                        # num weights
                        J = object_state_err_reshape.shape[2]
                        weights = model_dy.weight_matrix

                        assert len(
                            weights) == J, "len(weights) = %d, but J = %d" % (
                                len(weights), J)

                        # loss mse object, note the use of broadcasting semantics
                        # [B, n_roll]
                        object_state_loss_mse = weights * torch.pow(
                            object_state_err_reshape, 2).sum(dim=-1)
                        object_state_loss_mse = object_state_loss_mse.mean()

                        l2_object = (weights * torch.norm(
                            object_state_err_reshape, dim=-1)).mean()

                        l2_object_final_step = (weights * torch.norm(
                            object_state_err_reshape[:, -1], dim=-1)).mean()

                        # [B, n_roll, robot_state_dim]
                        robot_state_err = state_pred_err[:, :,
                                                         robot_state_indices]
                        robot_state_loss_mse = torch.pow(robot_state_err,
                                                         2).sum(dim=-1).mean()

                        loss_container[
                            'object_state_loss_mse'] = object_state_loss_mse
                        loss_container[
                            'robot_state_loss_mse'] = robot_state_loss_mse
                        loss_container['l2_object'] = l2_object
                        loss_container[
                            'l2_object_final_step'] = l2_object_final_step

                        # total loss
                        loss = object_state_loss_mse + robot_state_loss_mse
                        loss_container['loss'] = loss

                        for key, val in loss_container.items():
                            if not key in average_meter_container:
                                average_meter_container[key] = AverageMeter()

                            average_meter_container[key].update(val.item(), B)

                    step_duration_meter.update(time.time() - step_start_time)

                    if phase == 'train':
                        optimizer.zero_grad()
                        loss.backward()
                        optimizer.step()

                    if (i % config['train']['log_per_iter']
                            == 0) or (global_iteration %
                                      config['train']['log_per_iter'] == 0):
                        log = '%s [%d/%d][%d/%d] LR: %.6f' % (
                            phase, epoch, config['train']['n_epoch'], i,
                            data_n_batches[phase], get_lr(optimizer))

                        # log += ', l2: %.6f' % (loss_container['l2'].item())
                        # log += ', l2_final_step: %.6f' %(loss_container['l2_final_step'].item())

                        log += ', step time %.6f' % (step_duration_meter.avg)
                        step_duration_meter.reset()

                        print(log)

                        # log data to tensorboard
                        # only do it once we have reached 100 iterations
                        if global_iteration > 100:
                            writer.add_scalar("Params/learning rate",
                                              get_lr(optimizer),
                                              global_iteration)
                            writer.add_scalar("Loss_train/%s" % (phase),
                                              loss.item(), global_iteration)

                            for loss_type, loss_obj in loss_container.items():
                                plot_name = "Loss/%s/%s" % (loss_type, phase)
                                writer.add_scalar(plot_name, loss_obj.item(),
                                                  counters[phase])

                            # only plot the weights if we are in the train phase . . . .
                            if phase == "train":
                                for i in range(len(weights)):
                                    plot_name = "Weights/%d" % (i)
                                    writer.add_scalar(plot_name,
                                                      weights[i].item(),
                                                      counters[phase])

                    if phase == 'train' and global_iteration % config['train'][
                            'ckp_per_iter'] == 0:
                        save_model(
                            model_dy, '%s/net_dy_epoch_%d_iter_%d' %
                            (train_dir, epoch, i))

                log = '%s [%d/%d] Loss: %.6f, Best valid: %.6f' % (
                    phase, epoch, config['train']['n_epoch'],
                    average_meter_container[valid_loss_type].avg,
                    best_valid_loss)
                print(log)

                # record all average_meter losses
                for key, meter in average_meter_container.items():
                    writer.add_scalar("AvgMeter/%s/%s" % (key, phase),
                                      meter.avg, epoch)

                if phase == "train":
                    if (scheduler is not None) and (
                            config['train']['lr_scheduler']['type']
                            == "StepLR"):
                        scheduler.step()

                if phase == 'valid':
                    if (scheduler is not None) and (
                            config['train']['lr_scheduler']['type']
                            == "ReduceLROnPlateau"):
                        scheduler.step(
                            average_meter_container[valid_loss_type].avg)

                    if average_meter_container[
                            valid_loss_type].avg < best_valid_loss:
                        best_valid_loss = average_meter_container[
                            valid_loss_type].avg
                        training_stats['epoch'] = epoch
                        training_stats['global_iteration'] = counters['valid']
                        save_yaml(training_stats, training_stats_file)
                        save_model(model_dy, '%s/net_best_dy' % (train_dir))

                writer.flush()  # flush SummaryWriter events to disk

    except KeyboardInterrupt:
        # save network if we have a keyboard interrupt
        save_model(
            model_dy, '%s/net_dy_epoch_%d_keyboard_interrupt' %
            (train_dir, epoch_counter_external))
        writer.flush()  # flush SummaryWriter events to disk
Example #22
0
from key_dynam.dataset.vision_function_factory import VisualObservationFunctionFactory
from key_dynam.dataset.online_episode_reader import OnlineEpisodeReader
from key_dynam.dataset.mpc_dataset import DynamicsModelInputBuilder
from key_dynam.utils import meshcat_utils
from key_dynam.planner.planners import RandomShootingPlanner, PlannerMPPI
from key_dynam.utils import transform_utils, torch_utils
from key_dynam.experiments.exp_09 import utils as exp_utils
from key_dynam.utils import drake_image_utils
from key_dynam.dynamics.utils import keypoints_3D_from_dynamics_model_output, set_seed
from key_dynam.eval.utils import compute_pose_error
from key_dynam.models import model_builder
from key_dynam.models.model_builder import build_dynamics_model
from key_dynam.autoencoder.autoencoder_models import ConvolutionalAutoencoder

# constants
set_seed(0)

USE_FIXED_MPC_HORIZON = False
USE_SHORT_HORIZON_MPC = False
TERMINAL_COST_ONLY = True
TRAJECTORY_GOAL = False
REPLAN = True

SEED_WITH_NOMINAL_ACTIONS = False

N = 2 * 10  # horizon length for ground truth push
N = 10
MPC_HORIZON = 10

PUSHER_VELOCITY = 0.20
PUSHER_ANGLE = np.deg2rad(20)
Example #23
0
def main():
    # load dynamics model
    model_dict = load_autoencoder_model()
    model = model_dict['model_dy']
    model_ae = model_dict['model_ae']
    visual_observation_function = model_dict['visual_observation_function']

    config = model.config

    env_config = load_yaml(
        os.path.join(get_project_root(),
                     'experiments/exp_18_box_on_side/config.yaml'))
    env_config['env']['observation']['depth_int16'] = True
    n_history = config['train']['n_history']

    # create the environment
    # create the environment
    env = DrakePusherSliderEnv(env_config)
    env.reset()

    # create another environment for doing rollouts
    env2 = DrakePusherSliderEnv(env_config, visualize=False)
    env2.reset()

    action_function = ActionFunctionFactory.function_from_config(config)
    observation_function = ObservationFunctionFactory.drake_pusher_position_3D(
        config)

    episode = OnlineEpisodeReader()
    mpc_input_builder = DynamicsModelInputBuilder(
        observation_function=observation_function,
        visual_observation_function=visual_observation_function,
        action_function=action_function,
        episode=episode)

    vis = meshcat_utils.make_default_visualizer_object()
    vis.delete()

    initial_cond = get_initial_state()
    reset_environment(env, initial_cond['q_pusher'], initial_cond['q_slider'])
    obs_init = env.get_observation()

    # visualize starting position of the object
    print("obs_init.keys()", obs_init.keys())
    print("obs_init['slider']['position']", obs_init['slider']['position'])
    T = DrakePusherSliderEnv.object_position_from_observation(obs_init)
    vis['start_pose'].set_object(triad(scale=0.1))
    vis['state_pose'].set_transform(T)

    #### ROLLOUT USING LEARNED MODEL + GROUND TRUTH ACTIONS ############
    reset_environment(env, initial_cond['q_pusher'], initial_cond['q_slider'])
    # add just some large number of these
    episode.clear()
    for i in range(n_history):
        action_zero = np.zeros(2)
        obs_tmp = env.get_observation()
        episode.add_observation_action(obs_tmp, action_zero)

    #### ROLLOUT THE ACTION SEQUENCE USING THE SIMULATOR ##########
    # rollout single action sequence using the simulator
    gt_rollout_data = env_utils.rollout_action_sequence(
        env, initial_cond['action_sequence'].cpu().numpy())
    env_obs_rollout_gt = gt_rollout_data['observations']
    gt_rollout_episode = gt_rollout_data['episode_reader']

    for i, env_obs in enumerate(gt_rollout_data['observations']):
        T = DrakePusherSliderEnv.object_position_from_observation(env_obs)
        vis_name = "GT_trajectory/%d" % (i)
        vis[vis_name].set_object(triad(scale=0.1))
        vis[vis_name].set_transform(T)

    action_state_gt = mpc_input_builder.get_action_state_tensors(
        start_idx=0, num_timesteps=N, episode=gt_rollout_episode)

    state_rollout_gt = action_state_gt['states']
    action_rollout_gt = action_state_gt['actions']
    z_object_rollout_gt = model.compute_z_state(
        state_rollout_gt)['z_object_flat']
    print('state_rollout_gt.shape', state_rollout_gt.shape)
    print("z_object_rollout_gt.shape", z_object_rollout_gt.shape)

    def goal_func(obs_tmp):
        state_tmp = mpc_input_builder.get_state_input_single_timestep(
            {'observation': obs_tmp})['state']
        return model.compute_z_state(
            state_tmp.unsqueeze(0))['z_object'].flatten()

    # using the vision model to get "goal" keypoints
    z_object_goal = goal_func(env_obs_rollout_gt[-1])
    z_object_goal_np = torch_utils.cast_to_numpy(z_object_goal)

    # input("press Enter to continue")

    #### ROLLOUT USING LEARNED MODEL + GROUND TRUTH ACTIONS ############
    reset_environment(env, initial_cond['q_pusher'], initial_cond['q_slider'])
    # add just some large number of these
    episode.clear()
    for i in range(n_history):
        action_zero = np.zeros(2)
        obs_tmp = env.get_observation()
        episode.add_observation_action(obs_tmp, action_zero)

    # [n_history, state_dim]
    idx = episode.get_latest_idx()

    dyna_net_input = mpc_input_builder.get_dynamics_model_input(
        idx, n_history=n_history)
    state_init = dyna_net_input['states'].cuda()  # [n_history, state_dim]
    action_init = dyna_net_input['actions']  # [n_history, action_dim]

    print("state_init.shape", state_init.shape)
    print("action_init.shape", action_init.shape)
    print("n_history", n_history)

    action_seq_gt_torch = initial_cond['action_sequence']
    action_input = torch.cat(
        (action_init[:(n_history - 1)], action_seq_gt_torch), dim=0).cuda()
    print("action_input.shape", action_input.shape)

    # rollout using the ground truth actions and learned model
    # need to add the batch dim to do that
    z_init = model.compute_z_state(state_init)['z']
    rollout_pred = rollout_model(state_init=z_init.unsqueeze(0),
                                 action_seq=action_input.unsqueeze(0),
                                 dynamics_net=model,
                                 compute_debug_data=True)

    state_pred_rollout = rollout_pred['state_pred'].squeeze(0)

    print("state_pred_rollout.shape", state_pred_rollout.shape)
    # input("press Enter to continue")

    # check L2 distance between predicted and actual
    # basically comparing state_pred_rollout and state_rollout_gt
    print("state_rollout_gt[-1]\n", state_rollout_gt[-1])
    print("state_pred_rollout[-1]\n", state_pred_rollout[-1])

    index_dict = get_object_and_robot_state_indices(config)
    object_indices = index_dict['object_indices']

    # reset the environment and use the MPC controller to stabilize this
    # now setup the MPC to try to stabilize this . . . .
    reset_environment(env, initial_cond['q_pusher'], initial_cond['q_slider'])
    episode.clear()

    # add just some large number of these
    for i in range(n_history):
        action_zero = np.zeros(2)
        obs_tmp = env.get_observation()
        episode.add_observation_action(obs_tmp, action_zero)

    # input("press Enter to continue")

    # make a planner config
    planner_config = copy.copy(config)
    config_tmp = load_yaml(
        os.path.join(get_project_root(),
                     'experiments/drake_pusher_slider/eval_config.yaml'))
    planner_config['mpc'] = config_tmp['mpc']

    planner_config['mpc']['mppi']['terminal_cost_only'] = TERMINAL_COST_ONLY
    planner_config['mpc']['random_shooting'][
        'terminal_cost_only'] = TERMINAL_COST_ONLY

    planner = None
    if PLANNER_TYPE == "random_shooting":
        planner = RandomShootingPlanner(planner_config)
    elif PLANNER_TYPE == "mppi":
        planner = PlannerMPPI(planner_config)
    else:
        raise ValueError("unknown planner type: %s" % (PLANNER_TYPE))

    mpc_out = None
    action_seq_mpc = None
    state_pred_mpc = None
    counter = -1
    while True:
        counter += 1
        print("\n\n-----Running MPC Optimization: Counter (%d)-------" %
              (counter))

        obs_cur = env.get_observation()
        episode.add_observation_only(obs_cur)

        if counter == 0 or REPLAN:
            print("replanning")
            ####### Run the MPC ##########

            # [1, state_dim]

            n_look_ahead = N - counter
            if USE_FIXED_MPC_HORIZON:
                n_look_ahead = MPC_HORIZON
            elif USE_SHORT_HORIZON_MPC:
                n_look_ahead = min(MPC_HORIZON, N - counter)
            if n_look_ahead == 0:
                break

            start_idx = counter
            end_idx = counter + n_look_ahead

            print("start_idx:", start_idx)
            print("end_idx:", end_idx)
            print("n_look_ahead", n_look_ahead)

            # start_time = time.time()
            # idx of current observation
            idx = episode.get_latest_idx()
            mpc_start_time = time.time()
            mpc_input_data = mpc_input_builder.get_dynamics_model_input(
                idx, n_history=n_history)
            state_cur = mpc_input_data['states']
            action_his = mpc_input_data['actions']

            if SEED_WITH_NOMINAL_ACTIONS:
                action_seq_rollout_init = action_seq_gt_torch[
                    start_idx:end_idx]
            else:
                if mpc_out is not None:
                    action_seq_rollout_init = mpc_out['action_seq'][1:]
                    print("action_seq_rollout_init.shape",
                          action_seq_rollout_init.shape)

                    if action_seq_rollout_init.shape[0] < n_look_ahead:
                        num_steps = n_look_ahead - action_seq_rollout_init.shape[
                            0]
                        action_seq_zero = torch.zeros([num_steps, 2])

                        action_seq_rollout_init = torch.cat(
                            (action_seq_rollout_init, action_seq_zero), dim=0)
                        print("action_seq_rollout_init.shape",
                              action_seq_rollout_init.shape)
                else:
                    action_seq_rollout_init = None

            # run MPPI
            z_cur = None
            with torch.no_grad():
                z_cur = model.compute_z_state(
                    state_cur.unsqueeze(0).cuda())['z'].squeeze(0)

            if action_seq_rollout_init is not None:
                n_look_ahead = action_seq_rollout_init.shape[0]

            obs_goal = None
            print("z_object_rollout_gt.shape", z_object_rollout_gt.shape)
            if TRAJECTORY_GOAL:
                obs_goal = z_object_rollout_gt[start_idx:end_idx]

                print("n_look_ahead", n_look_ahead)
                print("obs_goal.shape", obs_goal.shape)

                # add the final goal state on as needed
                if obs_goal.shape[0] < n_look_ahead:
                    obs_goal_final = z_object_rollout_gt[-1].unsqueeze(0)
                    num_repeat = n_look_ahead - obs_goal.shape[0]
                    obs_goal_final_expand = obs_goal_final.expand(
                        [num_repeat, -1])
                    obs_goal = torch.cat((obs_goal, obs_goal_final_expand),
                                         dim=0)
            else:
                obs_goal = z_object_rollout_gt[-1]

            obs_goal = torch_utils.cast_to_numpy(obs_goal)
            print("obs_goal.shape", obs_goal.shape)

            seed = 1

            set_seed(seed)
            mpc_out = planner.trajectory_optimization(
                state_cur=z_cur,
                action_his=action_his,
                obs_goal=obs_goal,
                model_dy=model,
                action_seq_rollout_init=action_seq_rollout_init,
                n_look_ahead=n_look_ahead,
                eval_indices=object_indices,
                rollout_best_action_sequence=True,
                verbose=True,
                add_grid_action_samples=True,
            )

            print("MPC step took %.4f seconds" %
                  (time.time() - mpc_start_time))
            action_seq_mpc = torch_utils.cast_to_numpy(mpc_out['action_seq'])
            state_pred_mpc = torch_utils.cast_to_numpy(mpc_out['state_pred'])

        # Rollout with ground truth simulator dynamics
        env2.set_simulator_state_from_observation_dict(
            env2.get_mutable_context(), obs_cur)
        obs_mpc_gt = env_utils.rollout_action_sequence(
            env2, action_seq_mpc)['observations']

        vis['mpc_3D'].delete()
        vis['mpc_GT_3D'].delete()

        L = len(obs_mpc_gt)
        print("L", L)
        if L == 0:
            break
        for i in range(L):

            # ground truth rollout of the MPC action_seq
            name = "mpc_GT_3D/%d" % (i)
            T_W_obj = DrakePusherSliderEnv.object_position_from_observation(
                obs_mpc_gt[i])
            vis[name].set_object(triad(scale=0.1))
            vis[name].set_transform(T_W_obj)

        action_cur = action_seq_mpc[0]

        print("action_cur", action_cur)
        print("action_GT", initial_cond['action'])
        input("press Enter to continue")

        # add observation actions to the episode
        obs_cur = env.get_observation()
        episode.replace_observation_action(obs_cur, action_cur)

        # step the simulator
        env.step(action_cur)

        # update the trajectories, in case we aren't replanning
        action_seq_mpc = action_seq_mpc[1:]
        state_pred_mpc = state_pred_mpc[1:]

        pose_error = compute_pose_error(env_obs_rollout_gt[-1], obs_cur)

        print("position_error: %.3f" % (pose_error['position_error']))
        print("angle error degrees: %.3f" %
              (pose_error['angle_error_degrees']))

    obs_final = env.get_observation()

    pose_error = compute_pose_error(env_obs_rollout_gt[-1], obs_final)

    print("position_error: %.3f" % (pose_error['position_error']))
    print("angle error degrees: %.3f" % (pose_error['angle_error_degrees']))
Example #24
0
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from progressbar import ProgressBar
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch.utils.data import Dataset, DataLoader
import torchvision.transforms as transforms
from torch.distributions.multivariate_normal import MultivariateNormal

from key_dynam.dynamics.config import gen_args
from key_dynam.dynamics.data import PhysicsDataset, load_data
from key_dynam.dynamics.models_dy import DynaNetGNN
from key_dynam.dynamics.utils import rand_int, count_trainable_parameters, Tee, AverageMeter, get_lr, to_np, set_seed

args = gen_args()
set_seed(args.random_seed)

torch.manual_seed(args.random_seed)
np.random.seed(args.random_seed)

os.system('mkdir -p ' + args.dataf)
os.system('mkdir -p ' + args.outf_dy)
tee = Tee(os.path.join(args.outf_dy, 'train.log'), 'w')

print(args)

# generate data
trans_to_tensor = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
Example #25
0
# GLOBAL_TRANSLATION = np.array([-0.1, 0.0, 0])  # doesn't work with any offset
GLOBAL_TRANSLATION = np.array([0,0,0])
SEED_MPC_W_GT_ACTION_SEQUENCE = False
RANDOM_SEED = 3

OBJECT_YAW = np.deg2rad(-90)

REPLAN = True

PLANNER_TYPE = "mppi"
# PLANNER_TYPE = "random_shooting"

BOX_ON_SIDE = True


set_seed(RANDOM_SEED)

def sample_object_position(T_aug=None,
                           upright=False):

    pos = np.array([0, 0, 0.1])
    quat = None
    if upright:
        quat = np.array([1,0,0,0])
    else:
        quat = transforms3d.euler.euler2quat(np.deg2rad(90), 0, 0)

    T_O_slider = transform_utils.transform_from_pose(pos, quat)

    # apply a random yaw to the object
    yaw = OBJECT_YAW
Example #26
0
def run_precompute_descriptors_pipeline(multi_episode_dict, # dict
                                        model, # dense descriptor model file
                                        model_file=None,
                                        output_dir=None, # str where to save data
                                        episode_name=None, # optional for descriptor sampling
                                        camera_name=None, # which camera to compute descriptors for
                                        episode_idx=None, # optional for descriptor sampling
                                        visualize=True,
                                        K=5,
                                        position_diff_threshold=20,
                                        seed=0,
                                        ):

    assert model_file is not None
    assert camera_name is not None
    #
    # ## Load Model
    # model_train_dir = os.path.dirname(model_file)
    #
    # print("model_train_dir", model_train_dir)
    # print("model_file", model_file)
    # model = torch.load(model_file)
    # model = model.cuda()
    # model = model.eval()
    #
    # output_dir = os.path.join(model_train_dir,
    #                           'precomputed_vision_data/descriptor_keypoints/dataset_%s/' % (dataset_name))

    # compute descriptor confidence scores
    set_seed(seed)
    if True:
        print("\n\n---------Computing Descriptor Confidence Scores-----------")
        metadata_file = os.path.join(output_dir, 'metadata.p')
        if os.path.isfile(metadata_file):
            answer = input("metadata.p file already exists, do you want to overwrite it? y/n\n")

            if answer == "y":
                shutil.rmtree(output_dir)
                print("removing existing file and continuing")

            else:
                print("aborting")
                quit()



        compute_descriptor_confidences(multi_episode_dict,
                                       model,
                                       output_dir,
                                       batch_size=10,
                                       num_workers=20,
                                       model_file=model_file,
                                       camera_name=camera_name,
                                       num_ref_descriptors=50,
                                       num_batches=10,
                                       episode_name_arg=episode_name,
                                       episode_idx=episode_idx,
                                       )

    if True:
        confidence_score_data_file = os.path.join(output_dir, 'data.p')
        confidence_score_data = load_pickle(confidence_score_data_file)

        metadata_file = os.path.join(output_dir, 'metadata.p')
        metadata = load_pickle(metadata_file)

        print("\n\n---------Selecting Spatially Separated Keypoints-----------")
        score_and_select_spatially_separated_keypoints(metadata,
                                                       confidence_score_data=confidence_score_data,
                                                       K=K,
                                                       position_diff_threshold=position_diff_threshold,
                                                       output_dir=output_dir,
                                                       )

    # visualize descriptors
    if True:
        metadata_file = os.path.join(output_dir, 'metadata.p')
        metadata = load_pickle(metadata_file)

        episode_name = metadata['episode_name']
        episode_idx = metadata['episode_idx']
        camera_name = metadata['camera_name']

        episode = multi_episode_dict[episode_name]
        data = episode.get_image_data(camera_name, episode_idx)
        rgb = data['rgb']

        uv = metadata['indices']

        print("uv.shape", uv.shape)

        color = [0, 255, 0]
        draw_reticles(rgb, uv[:, 0], uv[:, 1], label_color=color)

        save_file = os.path.join(output_dir, 'sampled_descriptors.png')


        plt.figure()
        plt.imshow(rgb)
        plt.savefig(save_file)
        if visualize:
            plt.show()

    # visualize spatially separated descriptors
    if True:
        metadata_file = os.path.join(output_dir, 'metadata.p')
        metadata = load_pickle(metadata_file)

        spatial_descriptor_file = os.path.join(output_dir, 'spatial_descriptors.p')
        spatial_descriptors_data = load_pickle(spatial_descriptor_file)
        des_idx = spatial_descriptors_data['spatial_descriptors_idx']

        episode_name = metadata['episode_name']
        episode_idx = metadata['episode_idx']
        camera_name = metadata['camera_name']

        episode = multi_episode_dict[episode_name]
        data = episode.get_image_data(camera_name, episode_idx)
        rgb = data['rgb']

        uv = metadata['indices']

        print("uv.shape", uv.shape)

        color = [0, 255, 0]
        draw_reticles(rgb, uv[des_idx, 0], uv[des_idx, 1], label_color=color)

        save_file = os.path.join(output_dir, 'spatially_separated_descriptors.png')

        plt.figure()
        plt.imshow(rgb)
        plt.savefig(save_file)
        if visualize:
            plt.show()


    if True:
        metadata_file = os.path.join(output_dir, 'metadata.p')
        metadata = load_pickle(metadata_file)

        print("\n\n---------Precomputing Descriptor Keypoints-----------")
        descriptor_keypoints_output_dir = os.path.join(output_dir, "descriptor_keypoints")
        precompute_descriptor_keypoints(multi_episode_dict,
                                        model,
                                        descriptor_keypoints_output_dir,
                                        ref_descriptors_metadata=metadata,
                                        batch_size=8,
                                        num_workers=20,
                                        camera_names=[camera_name]
                                        )

    print("Data saved at: ", output_dir)
    print("Finished Normally")