Example #1
0
def test_produce_when_inference_model_moco():
    test_frame = load_frame()
    rsp = RemoteSensingPretrainedPrimitive(
        hyperparams=rs_hp(
            rs_hp.defaults(),
            inference_model = 'moco',
            use_columns = [1],
        ),
        volumes = {'amdim_weights': amdim_path, 'moco_weights': moco_path},
    )
    global feature_df
    feature_df = rsp.produce(inputs=test_frame).value
    _test_output_df(test_frame, feature_df, 2048)
Example #2
0
def test_produce_when_inference_model_moco_decompress():
    test_frame = load_frame(compress_data = True)
    rsp = RemoteSensingPretrainedPrimitive(
        hyperparams=rs_hp(
            rs_hp.defaults(),
            inference_model = 'moco',
            use_columns = [1],
            decompress_data = True,
        ),
        volumes = {'amdim_weights': amdim_path, 'moco_weights': moco_path},
    )
    decompress_feature_df = rsp.produce(inputs=test_frame).value
    _test_output_df(test_frame, decompress_feature_df, 2048)
    assert decompress_feature_df.equals(feature_df)
Example #3
0
def test_big_earthnet():

    train_inputs, labels = load_big_earthnet()

    featurizer = RemoteSensingPretrainedPrimitive(hyperparams=rs_hp(
        rs_hp.defaults(),
        inference_model='moco',
        use_columns=[0],
    ),
                                                  volumes={
                                                      'amdim_weights':
                                                      amdim_path,
                                                      'moco_weights': moco_path
                                                  })
    features = featurizer.produce(inputs=train_inputs).value
    features.to_pickle("dummy.pkl")
    # features = pd.read_pickle("dummy.pkl")

    iterative_labeling(features, labels)
Example #4
0
def load_inputs():
    fnames = sorted(glob('/test_data/bigearth-100-single/*/*.tif'))
    imnames = sorted(list(set(['_'.join(f.split('_')[:-1]) for f in fnames])))
    imgs = [load_patch(img_path).astype(np.float32) for img_path in imnames]
    imgs_df = pd.DataFrame({'image_col': imgs, 'dummy_idx': range(len(imgs))})

    y = [i.split('/')[3] for i in imnames]
    tgts_df = pd.DataFrame({'target': y})

    return (d3m_DataFrame(imgs_df), d3m_DataFrame(tgts_df))


train_inputs, labels = load_inputs()
featurizer = RemoteSensingPretrainedPrimitive(hyperparams=rs_hp(
    rs_hp.defaults(),
    inference_model='moco',
    use_columns=[0],
    pool_features=False),
                                              volumes={
                                                  'amdim_weights': amdim_path,
                                                  'moco_weights': moco_path
                                              })
features = featurizer.produce(inputs=train_inputs).value
features = features.drop(columns='dummy_idx')
# features.to_pickle("dummy.pkl")
# labels.to_pickle("labels.pkl")
# features = pd.read_pickle("dummy.pkl")
# labels = pd.read_pickle("labels.pkl")


def test_fit():