def delete_isvc(self, name, namespace): """Delete the provided InferenceService in the specified namespace. :param name: The custom object :param namespace: The custom resource :returns: object: The deleted InferenceService. """ KFServing = KFServingClient( config_file=self.config_file, context=self.context, client_configuration=self.client_configuration, persist_config=self.persist_config) return KFServing.delete(name, namespace=namespace)
def test_set_credentials_gcp(): '''Test GCP credentials creating''' KFServing = KFServingClient() sa_name = constants.DEFAULT_SA_NAME KFServing.set_credentials( storage_type='gcs', namespace=KFSERVING_TEST_NAMESPACE, credentials_file='./credentials/gcp_credentials.json', sa_name=sa_name) created_sa = get_created_sa(sa_name) created_secret_name = created_sa.secrets[0].name created_secret = get_created_secret(created_secret_name) assert created_secret.data[ constants.GCS_CREDS_FILE_DEFAULT_NAME] == gcp_testing_creds
def roll(self, kfservice_id): mykfservice = db.session.query(KfService).filter_by( id=kfservice_id).first() namespace = conf.get('KFSERVING_NAMESPACE') crd_info = conf.get('CRD_INFO')['inferenceservice'] # 根据service生成container def make_container(service, mykfservice): from myapp.utils.py.py_k8s import K8s k8s = K8s() # 不部署,不需要配置集群信息 container = k8s.make_container( name=mykfservice.name + "-" + service.name, command=["sh", "-c", service.command] if service.command else None, args=None, volume_mount=None, image_pull_policy=conf.get('IMAGE_PULL_POLICY', 'Always'), image=service.images, working_dir=service.working_dir if service.working_dir else None, env=service.env, resource_memory=service.resource_memory, resource_cpu=service.resource_cpu, resource_gpu=service.resource_gpu, username=service.created_by.username, ports=service.ports) return container canary_endpoint_spec = V1alpha2EndpointSpec( predictor=V1alpha2PredictorSpec( min_replicas=mykfservice.canary_service.min_replicas, max_replicas=mykfservice.canary_service.max_replicas, custom=V1alpha2CustomSpec(container=make_container( mykfservice.canary_service, mykfservice)))) if mykfservice.canary_service else None KFServing = KFServingClient() KFServing.rollout_canary(mykfservice.name, canary=canary_endpoint_spec, percent=mykfservice.canary_traffic_percent, namespace=namespace, timeout_seconds=120, version=crd_info['version']) flash(category='warning', message='滚动升级已配置,刷新查看当前流量比例') return redirect('/kfservice_modelview/list/')
def test_azure_credentials(): '''Test Azure credentials creating''' KFServing = KFServingClient() sa_name = constants.DEFAULT_SA_NAME KFServing.set_credentials( storage_type='Azure', namespace=KFSERVING_TEST_NAMESPACE, credentials_file='./credentials/azure_credentials.json', sa_name=sa_name) created_sa = get_created_sa(sa_name) created_secret_name = created_sa.secrets[0].name created_secret = get_created_secret(created_secret_name) assert created_secret.data['AZ_CLIENT_ID'] == 'dXNlcgo=' assert created_secret.data['AZ_CLIENT_SECRET'] == 'cGFzc3dvcmQ=' assert created_secret.data[ 'AZ_SUBSCRIPTION_ID'] == 'MzMzMzMzMzMtMzMzMy0zMzMzLTMzMzMtMzMzMzMz' assert created_secret.data['AZ_TENANT_ID'] == 'MTIzNAo='
def test_azure_credentials(): '''Test Azure credentials creating''' KFServing = KFServingClient() sa_name = constants.DEFAULT_SA_NAME KFServing.set_credentials(storage_type='Azure', namespace='kubeflow', credentials_file='./azure_credentials.json', sa_name=sa_name) created_sa = get_created_sa(sa_name) created_secret_name = created_sa.secrets[0].name created_secret = get_created_secret(created_secret_name) assert created_secret.data[ 'AZ_CLIENT_ID'] == 'YTJhYjExYWYtMDFhYS00NzU5LTgzNDUtNzgwMzI4N2RiZD' assert created_secret.data['AZ_CLIENT_SECRET'] == 'password' assert created_secret.data[ 'AZ_SUBSCRIPTION_ID'] == 'MzMzMzMzMzMtMzMzMy0zMzMzLTMzMzMtMzMzMzMz' assert created_secret.data[ 'AZ_TENANT_ID'] == 'QUJDREVGR0gtMTIzNC0xMjM0LTEyMzQtQUJDREVGR0hJSk'
def deploy_model(action, model_name, default_model_uri, canary_model_uri, canary_model_traffic, namespace, framework, default_custom_model_spec, canary_custom_model_spec, autoscaling_target=0): if int(autoscaling_target) != 0: annotations = { "autoscaling.knative.dev/target": str(autoscaling_target) } else: annotations = None metadata = client.V1ObjectMeta(name=model_name, namespace=namespace, annotations=annotations) if framework != 'custom': default_model_spec = ModelSpec(framework, default_model_uri) else: default_model_spec = customModelSpec(default_custom_model_spec) # Create Canary deployment if canary model uri is provided. if framework != 'custom' and canary_model_uri: canary_model_spec = ModelSpec(framework, canary_model_uri) kfsvc = kfserving_deployment(metadata, default_model_spec, canary_model_spec, canary_model_traffic) elif framework == 'custom' and canary_custom_model_spec: canary_model_spec = customModelSpec(canary_custom_model_spec) kfsvc = kfserving_deployment(metadata, default_model_spec, canary_model_spec, canary_model_traffic) else: kfsvc = kfserving_deployment(metadata, default_model_spec) KFServing = KFServingClient() if action == 'create': KFServing.create(kfsvc) elif action == 'update': KFServing.patch(model_name, kfsvc) elif action == 'delete': KFServing.delete(model_name, namespace=namespace) else: raise ("Error: No matching action: " + action) model_status = KFServing.get(model_name, namespace=namespace) return model_status
def create_isvc(self, namespace, isvc): """Create the provided InferenceService in the specified namespace. :param namespace: The custom resource :param InferenceService: The InferenceService body :returns: object: Created InferenceService. """ KFServing = KFServingClient() try: created_isvc = KFServing.create(isvc, namespace=namespace) isvc_name = created_isvc['metadata']['name'] isvc_namespace = created_isvc['metadata']['namespace'] KFServing.get(isvc_name, isvc_namespace, watch=True) return created_isvc except client.rest.ApiException: raise RuntimeError("Failed to create InferenceService. Perhaps the CRD " "InferenceService version {} is not installed? "\ .format(constants.KFSERVING_VERSION))
def test_set_credentials_s3(): """Test S3 credentials creating.""" kfserving = KFServingClient() credentials_file = './credentials/aws_credentials' # Test creating service account case. sa_name = constants.DEFAULT_SA_NAME if check_sa_exists(sa_name): delete_sa(sa_name) kfserving.set_credentials(storage_type='s3', namespace=KFSERVING_TEST_NAMESPACE, credentials_file=credentials_file, s3_profile='default', s3_endpoint='s3.us-west-2.amazonaws.com', s3_region='us-west-2', s3_use_https='1', s3_verify_ssl='0') sa_body = get_created_sa(sa_name) created_secret_name = sa_body.secrets[0].name created_secret = get_created_secret(created_secret_name) config = configparser.ConfigParser() config.read([expanduser(credentials_file)]) s3_access_key_id = config.get('default', 'aws_access_key_id') s3_secret_access_key = config.get('default', 'aws_secret_access_key') assert created_secret.data[ constants.S3_ACCESS_KEY_ID_DEFAULT_NAME] == s3_access_key_id assert created_secret.data[ constants.S3_SECRET_ACCESS_KEY_DEFAULT_NAME] == s3_secret_access_key assert created_secret.metadata.annotations[ constants.KFSERVING_GROUP + '/s3-endpoint'] == 's3.us-west-2.amazonaws.com' assert created_secret.metadata.annotations[constants.KFSERVING_GROUP + '/s3-region'] == 'us-west-2' assert created_secret.metadata.annotations[constants.KFSERVING_GROUP + '/s3-usehttps'] == '1' assert created_secret.metadata.annotations[constants.KFSERVING_GROUP + '/s3-verifyssl'] == '0'
def create_inference_service(namespace: str, name: str, storage_url: str, runtime_version: str, service_account_name: str): api_version = os.path.join(constants.KFSERVING_GROUP, constants.KFSERVING_VERSION) default_endpoint_spec = V1alpha2EndpointSpec( predictor=V1alpha2PredictorSpec( min_replicas=1, service_account_name=service_account_name, triton=V1alpha2TritonSpec(runtime_version=runtime_version, storage_uri=storage_url, resources=V1ResourceRequirements( requests={ 'cpu': '100m', 'memeory': '1Gi' }, limits={ 'cpu': '100m', 'memory': '1Gi' })))) isvc = V1alpha2InferenceService( api_version=api_version, kind=constants.KFSERVING_KIND, metadata=client.V1ObjectMeta(name=name, namespace=namespace), spec=V1alpha2InferenceServiceSpec(default=default_endpoint_spec), ) KFServing = KFServingClient() KFServing.create(isvc) KFServing.get(name, namespace=namespace, watch=True, timeout_seconds=300)
def run(self): parser = argparse.ArgumentParser() parser.add_argument('--namespace', required=False, default='kubeflow') # pvc://${PVCNAME}/dir parser.add_argument('--storage_uri', required=False, default='/mnt/export') parser.add_argument('--name', required=False, default='kfserving-sample') args = parser.parse_args() namespace = args.namespace serving_name = args.name api_version = constants.KFSERVING_GROUP + '/' + constants.KFSERVING_VERSION default_endpoint_spec = V1alpha2EndpointSpec( predictor=V1alpha2PredictorSpec( tensorflow=V1alpha2TensorflowSpec( storage_uri=args.storage_uri, resources=V1ResourceRequirements( requests={'cpu':'100m','memory':'1Gi'}, limits={'cpu':'100m', 'memory':'1Gi'})))) isvc = V1alpha2InferenceService(api_version=api_version, kind=constants.KFSERVING_KIND, metadata=client.V1ObjectMeta( name=serving_name, namespace=namespace), spec=V1alpha2InferenceServiceSpec(default=default_endpoint_spec)) KFServing = KFServingClient() KFServing.create(isvc) print('waiting 5 sec for Creating InferenceService') time.sleep(5) KFServing.get(serving_name, namespace=namespace, watch=True, timeout_seconds=300)
def deploy_model(namespace,trained_model_path): logging.basicConfig(level=logging.INFO) logging.info('Starting deploy model step ..') logging.info('Input data ..') logging.info('namespace:{}'.format(namespace)) logging.info('trained_model_path:{}'.format(trained_model_path)) logging.info('STEP: DEPLOY MODEL (1/2) Generating definition..') api_version = constants.KFSERVING_GROUP + '/' + constants.KFSERVING_VERSION now = datetime.datetime.utcnow().strftime("%Y%m%d%H%M%S") inference_service_name = 'simple-model'+now default_endpoint_spec = V1alpha2EndpointSpec( predictor=V1alpha2PredictorSpec( tensorflow=V1alpha2TensorflowSpec( storage_uri=trained_model_path, resources=V1ResourceRequirements( requests={'cpu': '100m', 'memory': '1Gi'}, limits={'cpu': '100m', 'memory': '1Gi'})))) isvc = V1alpha2InferenceService(api_version=api_version, kind=constants.KFSERVING_KIND, metadata=client.V1ObjectMeta( name=inference_service_name, annotations= { 'sidecar.istio.io/inject': 'false', 'autoscaling.knative.dev/target': '1' }, namespace=namespace), spec=V1alpha2InferenceServiceSpec(default=default_endpoint_spec)) #velascoluis: sidecar is disabled by https://github.com/knative/serving/issues/6829 #Note: make sure trained model path starts with file:// or gs:// KFServing = KFServingClient() logging.info('STEP: DEPLOY MODEL (2/2) Creating inference service..') KFServing.create(isvc) logging.info('Inference service ' + inference_service_name + " created ...") KFServing.get(inference_service_name, namespace=namespace, watch=True, timeout_seconds=120) logging.info('Deploy model step finished')
def deploy_model(namespace: str, trained_model_path: InputPath(str)): from kubernetes import client from kfserving import KFServingClient from kfserving import constants from kfserving import V1alpha2EndpointSpec from kfserving import V1alpha2PredictorSpec from kfserving import V1alpha2TensorflowSpec from kfserving import V1alpha2InferenceServiceSpec from kfserving import V1alpha2InferenceService from kubernetes.client import V1ResourceRequirements api_version = constants.KFSERVING_GROUP + '/' + constants.KFSERVING_VERSION inference_service_name = 'inference112cbk' default_endpoint_spec = V1alpha2EndpointSpec( predictor=V1alpha2PredictorSpec(tensorflow=V1alpha2TensorflowSpec( storage_uri=trained_model_path, resources=V1ResourceRequirements(requests={ 'cpu': '100m', 'memory': '1Gi' }, limits={ 'cpu': '100m', 'memory': '1Gi' })))) isvc = V1alpha2InferenceService( api_version=api_version, kind=constants.KFSERVING_KIND, metadata=client.V1ObjectMeta(name=inference_service_name, namespace=namespace), spec=V1alpha2InferenceServiceSpec(default=default_endpoint_spec)) KFServing = KFServingClient() KFServing.create(isvc) print('Inference service ' + inference_service_name + " created ...") KFServing.get(inference_service_name, namespace=namespace, watch=True, timeout_seconds=120) print('Model deployed')
def deploy_model(namespace, model_file_name, gcp_bucket): api_version = constants.KFSERVING_GROUP + '/' + constants.KFSERVING_VERSION now = datetime.datetime.utcnow().strftime("%Y%m%d%H%M%S") inference_service_name = 'xgboost-r' + now default_endpoint_spec = V1alpha2EndpointSpec( predictor=V1alpha2PredictorSpec( min_replicas=1, xgboost=V1alpha2XGBoostSpec( #storage_uri='gs://'+gcp_bucket+'/rmodel/'+model_file_name, storage_uri='gs://' + gcp_bucket + '/rmodel', resources=V1ResourceRequirements(requests={ 'cpu': '100m', 'memory': '1Gi' }, limits={ 'cpu': '100m', 'memory': '1Gi' })))) isvc = V1alpha2InferenceService( api_version=api_version, kind=constants.KFSERVING_KIND, metadata=client.V1ObjectMeta( name=inference_service_name, namespace=namespace, annotations={'sidecar.istio.io/inject': 'false'}), spec=V1alpha2InferenceServiceSpec(default=default_endpoint_spec)) #@velascoluis - annotation The sidecar.istio.io/inject: "false", otherwise the ingress does not work KFServing = KFServingClient() KFServing.create(isvc) KFServing.get(inference_service_name, namespace=namespace, watch=True, timeout_seconds=120)
def run(self): logger.info("Retrieving kfserving client") client = KFServingClient() logger.info("Specifying canary") canary = V1alpha2EndpointSpec(predictor=V1alpha2PredictorSpec( min_replicas=1, custom=V1alpha2CustomSpec(container=V1Container( name=Serve.SERVICE_NAME, image="{}:{}".format(Pipeline.DEPLOY_IMAGE, self.args.tag), image_pull_policy="Always", )))) logger.info("Rolling out canary deployment") client.rollout_canary(Serve.SERVICE_NAME, canary=canary, percent=50, namespace=Rollout.NAMESPACE, watch=True) logger.info("Promoting canary deployment") client.promote(Serve.SERVICE_NAME, namespace=Rollout.NAMESPACE, watch=True)
api_version = constants.KFSERVING_GROUP + '/' + constants.KFSERVING_VERSION default_endpoint_spec = V1alpha2EndpointSpec(predictor=V1alpha2PredictorSpec( tensorflow=V1alpha2CustomSpec( storage_uri='gs://kfserving-samples/models/tensorflow/flowers', resources=V1ResourceRequirements(requests={ 'cpu': '100m', 'memory': '1Gi' }, limits={ 'cpu': '100m', 'memory': '1Gi' })))) isvc = V1alpha2InferenceService( api_version=api_version, kind=constants.KFSERVING_KIND, metadata=client.V1ObjectMeta(name='flower-sample', namespace=namespace), spec=V1alpha2InferenceServiceSpec(default=default_endpoint_spec)) KFServing = KFServingClient() KFServing.create(isvc) KFServing.get('flower-sample', namespace=namespace, watch=True, timeout_seconds=120) # KFServing.delete('flower-sample', namespace=namespace)
from kfserving import KFServingClient from kfserving import constants from kfserving import V1alpha2EndpointSpec from kfserving import V1alpha2PredictorSpec from kfserving import V1alpha2TransformerSpec from kfserving import V1alpha2PyTorchSpec from kfserving import V1alpha2CustomSpec from kfserving import V1alpha2InferenceServiceSpec from kfserving import V1alpha2InferenceService from kubernetes.client import V1ResourceRequirements from kubernetes.client import V1Container from ..common.utils import predict from ..common.utils import KFSERVING_TEST_NAMESPACE api_version = constants.KFSERVING_GROUP + '/' + constants.KFSERVING_VERSION KFServing = KFServingClient(config_file="~/.kube/config") def test_transformer(): service_name = 'isvc-transformer' default_endpoint_spec = V1alpha2EndpointSpec( predictor=V1alpha2PredictorSpec( min_replicas=1, pytorch=V1alpha2PyTorchSpec( storage_uri='gs://kfserving-samples/models/pytorch/cifar10', model_class_name="Net", resources=V1ResourceRequirements(requests={ 'cpu': '100m', 'memory': '256Mi' }, limits={
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from unittest.mock import patch from kubernetes import client from kfserving import V1alpha2EndpointSpec from kfserving import V1alpha2PredictorSpec from kfserving import V1alpha2TensorflowSpec from kfserving import V1alpha2KFServiceSpec from kfserving import V1alpha2KFService from kfserving import KFServingClient KFServing = KFServingClient() mocked_unit_result = \ ''' { "api_version": "serving.kubeflow.org/v1alpha2", "kind": "KFService", "metadata": { "name": "flower-sample", "namespace": "kubeflow" }, "spec": { "default": { "predictor": { "tensorflow": { "storage_uri": "gs://kfserving-samples/models/tensorflow/flowers"
default_endpoint_spec = V1alpha2EndpointSpec(predictor=V1alpha2PredictorSpec( tensorflow=V1alpha2TensorflowSpec( storage_uri="s3://anonymous-model-result/result/saved_model", resources=V1ResourceRequirements(requests={ "cpu": "100m", "memory": "1Gi" }, limits={ "cpu": "100m", "memory": "1Gi" })))) isvc = V1alpha2InferenceService( api_version=api_version, kind=constants.KFSERVING_KIND, metadata=client.V1ObjectMeta(name="mnist-kfserving", namespace=namespace), spec=V1alpha2InferenceServiceSpec(default=default_endpoint_spec)) KFServing = KFServingClient() KFServing.set_credentials( storage_type="S3", namespace='anonymous', credentials_file='credentials', s3_profile="default", s3_endpoint="minio-service.kubeflow.svc.cluster.local:9000", s3_region="us-west-1", s3_use_https="0", s3_verify_ssl="0") KFServing.create(isvc)
def perform_action(action, model_name, model_uri, canary_traffic_percent, namespace, framework, custom_model_spec, service_account, inferenceservice_yaml, request_timeout, autoscaling_target=0, enable_istio_sidecar=True, watch_timeout=300, min_replicas=0, max_replicas=0): """ Perform the specified action. If the action is not 'delete' and `inferenceService_yaml` was provided, the dict representation of the YAML will be sent directly to the Kubernetes API. Otherwise, a V1beta1InferenceService object will be built using the provided input and then sent for creation/update. :return InferenceService JSON output """ kfs_client = KFServingClient() if inferenceservice_yaml: # Overwrite name and namespace if exists if namespace: inferenceservice_yaml['metadata']['namespace'] = namespace if model_name: inferenceservice_yaml['metadata']['name'] = model_name else: model_name = inferenceservice_yaml['metadata']['name'] kfsvc = inferenceservice_yaml elif action != 'delete': # Create annotations annotations = {} if int(autoscaling_target) != 0: annotations["autoscaling.knative.dev/target"] = str(autoscaling_target) if not enable_istio_sidecar: annotations["sidecar.istio.io/inject"] = 'false' if not annotations: annotations = None metadata = client.V1ObjectMeta( name=model_name, namespace=namespace, annotations=annotations ) # If a custom model container spec was provided, build the V1Container # object using it. containers = [] if custom_model_spec: containers = [create_custom_container_spec(custom_model_spec)] # Build the V1beta1PredictorSpec. predictor_spec = create_predictor_spec( framework, model_uri, canary_traffic_percent, service_account, min_replicas, max_replicas, containers, request_timeout ) kfsvc = create_inference_service(metadata, predictor_spec) if action == "create": submit_api_request(kfs_client, 'create', model_name, kfsvc, namespace, watch=True, timeout_seconds=watch_timeout) elif action == "update": submit_api_request(kfs_client, 'update', model_name, kfsvc, namespace, watch=True, timeout_seconds=watch_timeout) elif action == "apply": try: submit_api_request(kfs_client, 'create', model_name, kfsvc, namespace, watch=True, timeout_seconds=watch_timeout) except Exception: submit_api_request(kfs_client, 'update', model_name, kfsvc, namespace, watch=True, timeout_seconds=watch_timeout) elif action == "delete": kfs_client.delete(model_name, namespace=namespace) else: raise ("Error: No matching action: " + action) model_status = kfs_client.get(model_name, namespace=namespace) return model_status
def deploy_model(action, model_name, default_model_uri, canary_model_uri, canary_model_traffic, namespace, framework, default_custom_model_spec, canary_custom_model_spec, service_account, autoscaling_target=0, enable_istio_sidecar=True, inferenceservice_yaml={}, watch_timeout=120, min_replicas=0, max_replicas=0): KFServing = KFServingClient() if inferenceservice_yaml: # Overwrite name and namespace if exist if namespace: inferenceservice_yaml['metadata']['namespace'] = namespace if model_name: inferenceservice_yaml['metadata']['name'] = model_name kfsvc = inferenceservice_yaml else: # Create annotation annotations = {} if int(autoscaling_target) != 0: annotations["autoscaling.knative.dev/target"] = str( autoscaling_target) if not enable_istio_sidecar: annotations["sidecar.istio.io/inject"] = 'false' if not annotations: annotations = None metadata = client.V1ObjectMeta(name=model_name, namespace=namespace, annotations=annotations) # Create Default deployment if default model uri is provided. if framework != "custom" and default_model_uri: default_model_spec = EndpointSpec(framework, default_model_uri, service_account, min_replicas, max_replicas) elif framework == "custom" and default_custom_model_spec: default_model_spec = customEndpointSpec(default_custom_model_spec, service_account, min_replicas, max_replicas) # Create Canary deployment if canary model uri is provided. if framework != "custom" and canary_model_uri: canary_model_spec = EndpointSpec(framework, canary_model_uri, service_account, min_replicas, max_replicas) kfsvc = InferenceService(metadata, default_model_spec, canary_model_spec, canary_model_traffic) elif framework == "custom" and canary_custom_model_spec: canary_model_spec = customEndpointSpec(canary_custom_model_spec, service_account, min_replicas, max_replicas) kfsvc = InferenceService(metadata, default_model_spec, canary_model_spec, canary_model_traffic) else: kfsvc = InferenceService(metadata, default_model_spec) def create(kfsvc, model_name, namespace): KFServing.create(kfsvc, namespace=namespace) time.sleep(1) KFServing.get(model_name, namespace=namespace, watch=True, timeout_seconds=watch_timeout) def update(kfsvc, model_name, namespace): KFServing.patch(model_name, kfsvc, namespace=namespace) time.sleep(1) KFServing.get(model_name, namespace=namespace, watch=True, timeout_seconds=watch_timeout) if action == "create": create(kfsvc, model_name, namespace) elif action == "update": update(kfsvc, model_name, namespace) elif action == "apply": try: create(kfsvc, model_name, namespace) except: update(kfsvc, model_name, namespace) elif action == "rollout": if inferenceservice_yaml: raise ("Rollout is not supported for inferenceservice yaml") KFServing.rollout_canary( model_name, canary=canary_model_spec, percent=canary_model_traffic, namespace=namespace, watch=True, timeout_seconds=watch_timeout, ) elif action == "promote": KFServing.promote(model_name, namespace=namespace, watch=True, timeout_seconds=watch_timeout) elif action == "delete": KFServing.delete(model_name, namespace=namespace) else: raise ("Error: No matching action: " + action) model_status = KFServing.get(model_name, namespace=namespace) return model_status
def get_kfserving_client(): client = KFServingClient() return client
def deploy_model(action, model_name, default_model_uri, canary_model_uri, canary_model_traffic, namespace, framework, default_custom_model_spec, canary_custom_model_spec, autoscaling_target=0): if int(autoscaling_target) != 0: annotations = { "autoscaling.knative.dev/target": str(autoscaling_target) } else: annotations = None metadata = client.V1ObjectMeta(name=model_name, namespace=namespace, annotations=annotations) # Create Default deployment if default model uri is provided. if framework != 'custom' and default_model_uri: default_model_spec = EndpointSpec(framework, default_model_uri) elif framework == 'custom' and default_custom_model_spec: default_model_spec = customEndpointSpec(default_custom_model_spec) # Create Canary deployment if canary model uri is provided. if framework != 'custom' and canary_model_uri: canary_model_spec = EndpointSpec(framework, canary_model_uri) kfsvc = InferenceService(metadata, default_model_spec, canary_model_spec, canary_model_traffic) elif framework == 'custom' and canary_custom_model_spec: canary_model_spec = customEndpointSpec(canary_custom_model_spec) kfsvc = InferenceService(metadata, default_model_spec, canary_model_spec, canary_model_traffic) else: kfsvc = InferenceService(metadata, default_model_spec) KFServing = KFServingClient() if action == 'create': KFServing.create(kfsvc, watch=True, timeout_seconds=120) elif action == 'update': KFServing.patch(model_name, kfsvc) elif action == 'rollout': KFServing.rollout_canary(model_name, canary=canary_model_spec, percent=canary_model_traffic, namespace=namespace, watch=True, timeout_seconds=120) elif action == 'promote': KFServing.promote(model_name, namespace=namespace, watch=True, timeout_seconds=120) elif action == 'delete': KFServing.delete(model_name, namespace=namespace) else: raise ("Error: No matching action: " + action) model_status = KFServing.get(model_name, namespace=namespace) return model_status
default_model_spec = ModelSpec(framework, default_model_uri) else: default_model_spec = customModelSpec(default_custom_model_spec) # Create Canary deployment if canary model uri is provided. if framework != 'custom' and canary_model_uri: canary_model_spec = ModelSpec(framework, canary_model_uri) kfsvc = kfserving_deployment(metadata, default_model_spec, canary_model_spec, canary_model_traffic) elif framework == 'custom' and canary_custom_model_spec: canary_model_spec = customModelSpec(canary_custom_model_spec) kfsvc = kfserving_deployment(metadata, default_model_spec, canary_model_spec, canary_model_traffic) else: kfsvc = kfserving_deployment(metadata, default_model_spec) KFServing = KFServingClient() if action == 'create': KFServing.create(kfsvc) elif action == 'update': KFServing.patch(model_name, kfsvc) elif action == 'delete': KFServing.delete(model_name, namespace=namespace) else: raise ("Error: No matching action: " + action) model_status = KFServing.get(model_name, namespace=namespace) print(model_status) if not os.path.exists(os.path.dirname(output_path)): os.makedirs(os.path.dirname(output_path))
def deploy_model( action, model_name, default_model_uri, canary_model_uri, canary_model_traffic, namespace, framework, default_custom_model_spec, canary_custom_model_spec, service_account, autoscaling_target=0, ): if int(autoscaling_target) != 0: annotations = {"autoscaling.knative.dev/target": str(autoscaling_target)} else: annotations = None metadata = client.V1ObjectMeta( name=model_name, namespace=namespace, annotations=annotations ) # Create Default deployment if default model uri is provided. if framework != "custom" and default_model_uri: default_model_spec = EndpointSpec(framework, default_model_uri, service_account) elif framework == "custom" and default_custom_model_spec: default_model_spec = customEndpointSpec( default_custom_model_spec, service_account ) # Create Canary deployment if canary model uri is provided. if framework != "custom" and canary_model_uri: canary_model_spec = EndpointSpec(framework, canary_model_uri, service_account) kfsvc = InferenceService( metadata, default_model_spec, canary_model_spec, canary_model_traffic ) elif framework == "custom" and canary_custom_model_spec: canary_model_spec = customEndpointSpec( canary_custom_model_spec, service_account ) kfsvc = InferenceService( metadata, default_model_spec, canary_model_spec, canary_model_traffic ) else: kfsvc = InferenceService(metadata, default_model_spec) KFServing = KFServingClient() def create(kfsvc, model_name, namespace): KFServing.create(kfsvc) time.sleep(1) KFServing.get(model_name, namespace=namespace, watch=True, timeout_seconds=120) def update(kfsvc, model_name, namespace): KFServing.patch(model_name, kfsvc) time.sleep(1) KFServing.get(model_name, namespace=namespace, watch=True, timeout_seconds=120) if action == "create": create(kfsvc, model_name, namespace) elif action == "update": update(kfsvc, model_name, namespace) elif action == "apply": try: create(kfsvc, model_name, namespace) except: update(kfsvc, model_name, namespace) elif action == "rollout": KFServing.rollout_canary( model_name, canary=canary_model_spec, percent=canary_model_traffic, namespace=namespace, watch=True, timeout_seconds=120, ) elif action == "promote": KFServing.promote( model_name, namespace=namespace, watch=True, timeout_seconds=120 ) elif action == "delete": KFServing.delete(model_name, namespace=namespace) else: raise ("Error: No matching action: " + action) model_status = KFServing.get(model_name, namespace=namespace) return model_status
# # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time from kfserving import KFServingClient KFServing = KFServingClient(load_kube_config=True) def wait_for_kfservice_ready(name, namespace='kfserving-ci-e2e-test', Timeout_seconds=600): for _ in range(round(Timeout_seconds / 10)): time.sleep(10) kfsvc_status = KFServing.get(name, namespace=namespace) for condition in kfsvc_status['status'].get('conditions', {}): if condition.get('type', '') == 'Ready': status = condition.get('status', 'Unknown') if status == 'True': return raise RuntimeError("Timeout to start the KFService.")
def deploy(self, kfservice_id): mykfservice = db.session.query(KfService).filter_by( id=kfservice_id).first() namespace = conf.get('KFSERVING_NAMESPACE') crd_info = conf.get('CRD_INFO')['inferenceservice'] # 根据service生成container def make_container(service, mykfservice): from myapp.utils.py.py_k8s import K8s k8s = K8s() # 不部署,不需要配置集群信息 container = k8s.make_container( name=mykfservice.name + "-" + service.name, command=["sh", "-c", service.command] if service.command else None, args=None, volume_mount=None, image_pull_policy=conf.get('IMAGE_PULL_POLICY', 'Always'), image=service.images, working_dir=service.working_dir if service.working_dir else None, env=service.env, resource_memory=service.resource_memory, resource_cpu=service.resource_cpu, resource_gpu=service.resource_gpu, username=service.created_by.username) return container api_version = crd_info['group'] + '/' + crd_info['version'] default_endpoint_spec = V1alpha2EndpointSpec( predictor=V1alpha2PredictorSpec( min_replicas=mykfservice.default_service.min_replicas, max_replicas=mykfservice.default_service.max_replicas, custom=V1alpha2CustomSpec(container=make_container( mykfservice.default_service, mykfservice)))) if mykfservice.default_service else None canary_endpoint_spec = V1alpha2EndpointSpec( predictor=V1alpha2PredictorSpec( min_replicas=mykfservice.canary_service.min_replicas, max_replicas=mykfservice.canary_service.max_replicas, custom=V1alpha2CustomSpec(container=make_container( mykfservice.canary_service, mykfservice)))) if mykfservice.canary_service else None metadata = kubernetes.client.V1ObjectMeta( name=mykfservice.name, labels={ "app": mykfservice.name, "rtx-user": mykfservice.created_by.username }, namespace=namespace) isvc = V1alpha2InferenceService( api_version=api_version, kind=crd_info['kind'], metadata=metadata, spec=V1alpha2InferenceServiceSpec( default=default_endpoint_spec, canary=canary_endpoint_spec, canary_traffic_percent=mykfservice.canary_traffic_percent)) KFServing = KFServingClient() try: KFServing.delete(mykfservice.name, namespace=namespace, version=crd_info['version']) except Exception as e: print(e) KFServing.create(isvc, namespace=namespace, version=crd_info['version']) flash(category='warning', message='部署启动,一分钟后部署完成') return redirect('/kfservice_modelview/list/')
def main(): api_version = constants.KFSERVING_GROUP + '/' + constants.KFSERVING_VERSION default_endpoint_spec = V1alpha2EndpointSpec( predictor=V1alpha2PredictorSpec(custom=V1alpha2CustomSpec( container=V1Container( name="kfserving-container", image=FLAGS.image, env=[{ "name": "STORAGE_URI", "value": "%s" % FLAGS.storage_uri }], resources=V1ResourceRequirements( limits={"nvidia.com/gpu": FLAGS.gpus_to_inference}), command=["python"], args=[ "model.py", "--model-name", "%s" % FLAGS.inference_name, "--out_dir", "%s" % FLAGS.model_path, "--classes_file", "%s" % FLAGS.classes_file, ])))) isvc = V1alpha2InferenceService( api_version=api_version, kind=constants.KFSERVING_KIND, metadata=k8s_client.V1ObjectMeta(name=FLAGS.inference_name, namespace=FLAGS.namespace), spec=V1alpha2InferenceServiceSpec(default=default_endpoint_spec)) # Create inference service KFServing = KFServingClient() KFServing.create(isvc) time.sleep(2) # Check inference service KFServing.get(FLAGS.inference_name, namespace=FLAGS.namespace, watch=True, timeout_seconds=180) model_status = KFServing.get(FLAGS.inference_name, namespace=FLAGS.namespace) for condition in model_status["status"]["conditions"]: if condition['type'] == 'Ready': if condition['status'] == 'True': print('Model is ready') break else: print( 'Model is timed out, please check the inferenceservice events for more details.' ) exit(1) try: print( model_status["status"]["url"] + " is the knative domain header. $ISTIO_INGRESS_ENDPOINT are defined in the below commands" ) print("Sample test commands: ") print( "# Note: If Istio Ingress gateway is not served with LoadBalancer, use $CLUSTER_NODE_IP:31380 as the ISTIO_INGRESS_ENDPOINT" ) print( "ISTIO_INGRESS_ENDPOINT=$(kubectl -n istio-system get service istio-ingressgateway -o jsonpath='{.status.loadBalancer.ingress[0].ip}')" ) # model_status['status']['url'] is like http://flowers-sample.kubeflow.example.com/v1/models/flowers-sample url = re.compile(r"https?://") host, path = url.sub("", model_status["status"]["url"]).split("/", 1) print('curl -X GET -H "Host: ' + host + '" http://$ISTIO_INGRESS_ENDPOINT/' + path) except: print("Model is not ready, check the logs for the Knative URL status.") exit(1)
V1alpha2XGBoostSpec, V1alpha2InferenceServiceSpec, V1alpha2InferenceService, V1beta1InferenceService, V1beta1InferenceServiceSpec, V1beta1PredictorSpec, V1beta1XGBoostSpec, ) from kubernetes.client import V1ResourceRequirements from ..common.utils import predict, KFSERVING_TEST_NAMESPACE api_version = f"{constants.KFSERVING_GROUP}/{constants.KFSERVING_VERSION}" api_v1beta1_version = ( f"{constants.KFSERVING_GROUP}/{constants.KFSERVING_V1BETA1_VERSION}") KFServing = KFServingClient( config_file=os.environ.get("KUBECONFIG", "~/.kube/config")) def test_xgboost_kfserving(): service_name = "isvc-xgboost" default_endpoint_spec = V1alpha2EndpointSpec( predictor=V1alpha2PredictorSpec( min_replicas=1, xgboost=V1alpha2XGBoostSpec( storage_uri="gs://kfserving-samples/models/xgboost/iris", resources=V1ResourceRequirements( requests={ "cpu": "100m", "memory": "256Mi" }, limits={
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from unittest.mock import patch from kubernetes import client from kfserving import V1alpha2EndpointSpec from kfserving import V1alpha2PredictorSpec from kfserving import V1alpha2TensorflowSpec from kfserving import V1alpha2InferenceServiceSpec from kfserving import V1alpha2InferenceService from kfserving import KFServingClient KFServing = KFServingClient(config_file='./kfserving/test/kubeconfig') mocked_unit_result = \ ''' { "api_version": "serving.kubeflow.org/v1alpha2", "kind": "InferenceService", "metadata": { "name": "flower-sample", "namespace": "kubeflow" }, "spec": { "default": { "predictor": { "tensorflow": { "storage_uri": "gs://kfserving-samples/models/tensorflow/flowers"