Example #1
0
def daniels_variant(measurements, true):
    iterations = 10
    _, xk, P, tau, rho, u, U, H, F, Q, N = common.init_all()
    nd = node_factory(xk, P, u, U, F, Q, H, rho, tau,
                      observe_factory(measurements.T), iterations)
    nd()
    preds = np.array(nd.logger['x']).squeeze()
    return preds, nd.post_rmse(true.T, start_element=RMSE_START)
Example #2
0
def make_simple_nodes(n=5, iterations=10, traj=None, noise_modifier=None):
    if not noise_modifier:
        noise_modifier = lambda _: 10
    nodes = []
    for i in range(n):
        traj2, xk, P, tau, rho, u, U, H, F, Q, N = common.init_all(traj)
        np.random.seed(i)
        traj2.Y = traj2.Y + (np.random.normal(size=traj2.Y.shape) *
                             noise_modifier(traj2.Y.shape))
        nd = node_factory(xk, P, u, U, F, Q, H, rho, tau,
                          observe_factory(traj2.Y.T.copy()), iterations)
        nodes.append(nd)
    return nodes
Example #3
0
def test_single_node_rmse():
    traj, xk, P, tau, rho, u, U, H, F, Q, N = init_all()
    f = observe_factory(traj.Y.T)
    m1 = node_factory(xk, P, u, U, F, Q, H, rho, tau, f)

    m1()

    x_log = np.array(m1.logger['x']).squeeze().T
    out_rmse_kf = np.sqrt(((x_log[:2] - traj.X[:2])**2).mean())
    out_rmse_nokf = np.sqrt(((traj.Y[:2] - traj.X[:2])**2).mean())

    exp_rmse_kf = 0.4621395030767436
    exp_rmse_nokf = 0.7668096325216082

    np.testing.assert_almost_equal(out_rmse_kf, exp_rmse_kf)
    np.testing.assert_almost_equal(out_rmse_nokf, exp_rmse_nokf)
Example #4
0
def daniels_variant(measurements,
                    true,
                    cov,
                    rho=0.95,
                    tau=5,
                    u=5,
                    debug=False):
    iterations = 10
    _, xk, P, _, _, _, _, H, F, Q, N = init_all()
    U = cov * (u - 3)
    nd = node_factory(xk, P, u, U, F, Q, H, rho, tau,
                      observe_factory(measurements.T), iterations)
    nd()
    preds = np.array(nd.logger['x']).squeeze()
    m, s = nd.rmse_stats(true.T)
    if debug:
        return preds, m, s, nd
    return preds, m, s
Example #5
0
def test_single_node():
    traj_ = init_trajectory(5)
    traj, xk, P, tau, rho, u, U, H, F, Q, N = init_all(traj_)
    f = observe_factory(traj.Y.T)
    m1 = node_factory(xk, P, u, U, F, Q, H, rho, tau, f)

    m1()

    exp_x = np.array([[-2.76740e-01, 1.09767e+00, 9.62620e-01, 1.09898e+00],
                      [-1.49130e-01, 2.92570e-01, 1.12011e+00, -3.49807e+00],
                      [1.45799e+00, 9.18870e-01, 8.70549e+00, 1.40484e+00],
                      [8.60280e-01, 6.99180e-01, 2.80428e+00, 3.62000e-03],
                      [9.53670e-01, -2.63710e-01, 2.23199e+00, -3.16430e+00]])
    exp_last_P = np.array([[0.53926178, 0.03091239, 1.74759438, 0.0822738],
                           [0.03091239, 0.54178761, 0.08098487, 1.78451349],
                           [1.74759438, 0.08098487, 9.21782513, 0.24729238],
                           [0.0822738, 1.78451349, 0.24729238, 9.44313789]])

    np.testing.assert_allclose(exp_x, np.array(m1.logger['x']), atol=1e-5)
    np.testing.assert_allclose(exp_last_P, m1.logger['P'][-1], atol=1e-5)
Example #6
0
def test_two_mean():
    traj, xk, P, tau, rho, u, U, H, F, Q, N = init_all()

    # observe_factory is now irrelevant
    m1 = node_factory(xk, P, u, U, F, Q, H, rho, tau,
                      observe_factory(traj.Y.T))
    m2 = node_factory(xk, P, u, U, F, Q, H, rho, tau,
                      observe_factory(traj.Y.T))

    zs = traj.Y.T
    zs_dist = traj.Y.T + np.random.normal(size=traj.Y.T.shape) * 0.1

    for z1, z2 in zip(zs, zs_dist):
        x1, P1, hyp_P1, hypR1 = m1.single_kf(z1)
        x2, P2, hyp_P2, hypR2 = m2.single_kf(z2)

    x_log = ((np.array(m1.logger['x']) + np.array(m2.logger['x'])) /
             2).squeeze().T
    out = np.sqrt(((x_log[:2] - traj.X[:2])**2).mean()), np.sqrt(
        ((traj.Y[:2] - traj.X[:2])**2).mean())
    expected = (0.46242291667779106, 0.7668096325216082)
    np.testing.assert_allclose(out, expected, atol=1e-3)
Example #7
0
def make_node(measurements, cov, rho=0.9, tau=5, u=5):
    _, xk, P, _, _, _, _, H, F, Q, N = init_all()
    U = cov * (u - 3)
    nd = node_factory(xk, P, u, U, F, Q, H, rho, tau,
                      observe_factory(measurements.T), 10)
    return nd