Example #1
0
    def load(config: Config, preload_data=True):
        """Loads a dataset.

        If preload_data is set, loads entity and relation maps as well as all splits.
        Otherwise, this data is lazy loaded on first use.

        """
        name = config.get("dataset.name")
        folder = os.path.join(kge_base_dir(), "data", name)
        if os.path.isfile(os.path.join(folder, "dataset.yaml")):
            config.log("Loading configuration of dataset " + name + "...")
            config.load(os.path.join(folder, "dataset.yaml"))

        dataset = Dataset(config, folder)
        if preload_data:
            dataset.entity_ids()
            dataset.relation_ids()
            for split in ["train", "valid", "test"]:
                dataset.split(split)
        return dataset
Example #2
0
def main():
    # default config
    config = Config()

    # now parse the arguments
    parser = create_parser(config)
    args, unknown_args = parser.parse_known_args()

    # If there where unknown args, add them to the parser and reparse. The correctness
    # of these arguments will be checked later.
    if len(unknown_args) > 0:
        parser = create_parser(
            config, filter(lambda a: a.startswith("--"), unknown_args)
        )
        args = parser.parse_args()

    # process meta-commands
    process_meta_command(args, "create", {"command": "start", "run": False})
    process_meta_command(args, "eval", {"command": "resume", "job.type": "eval"})
    process_meta_command(
        args, "test", {"command": "resume", "job.type": "eval", "eval.split": "test"}
    )
    process_meta_command(
        args, "valid", {"command": "resume", "job.type": "eval", "eval.split": "valid"}
    )
    # dump command
    if args.command == "dump":
        dump(args)
        exit()

    # package command
    if args.command == "package":
        package_model(args)
        exit()

    # start command
    if args.command == "start":
        # use toy config file if no config given
        if args.config is None:
            args.config = kge_base_dir() + "/" + "examples/toy-complex-train.yaml"
            print(
                "WARNING: No configuration specified; using " + args.config,
                file=sys.stderr,
            )

        if not vars(args)["console.quiet"]:
            print("Loading configuration {}...".format(args.config))
        config.load(args.config)

    # resume command
    if args.command == "resume":
        if os.path.isdir(args.config) and os.path.isfile(args.config + "/config.yaml"):
            args.config += "/config.yaml"
        if not vars(args)["console.quiet"]:
            print("Resuming from configuration {}...".format(args.config))
        config.load(args.config)
        config.folder = os.path.dirname(args.config)
        if not config.folder:
            config.folder = "."
        if not os.path.exists(config.folder):
            raise ValueError(
                "{} is not a valid config file for resuming".format(args.config)
            )

    # overwrite configuration with command line arguments
    for key, value in vars(args).items():
        if key in [
            "command",
            "config",
            "run",
            "folder",
            "checkpoint",
            "abort_when_cache_outdated",
        ]:
            continue
        if value is not None:
            if key == "search.device_pool":
                value = "".join(value).split(",")
            try:
                if isinstance(config.get(key), bool):
                    value = argparse_bool_type(value)
            except KeyError:
                pass
            config.set(key, value)
            if key == "model":
                config._import(value)

    # initialize output folder
    if args.command == "start":
        if args.folder is None:  # means: set default
            config_name = os.path.splitext(os.path.basename(args.config))[0]
            config.folder = os.path.join(
                kge_base_dir(),
                "local",
                "experiments",
                datetime.datetime.now().strftime("%Y%m%d-%H%M%S") + "-" + config_name,
            )
        else:
            config.folder = args.folder

    # catch errors to log them
    try:
        if args.command == "start" and not config.init_folder():
            raise ValueError("output folder {} exists already".format(config.folder))
        config.log("Using folder: {}".format(config.folder))

        # determine checkpoint to resume (if any)
        if hasattr(args, "checkpoint"):
            checkpoint_file = get_checkpoint_file(config, args.checkpoint)

        # disable processing of outdated cached dataset files globally
        Dataset._abort_when_cache_outdated = args.abort_when_cache_outdated

        # log configuration
        config.log("Configuration:")
        config.log(yaml.dump(config.options), prefix="  ")
        config.log("git commit: {}".format(get_git_revision_short_hash()), prefix="  ")

        # set random seeds
        def get_seed(what):
            seed = config.get(f"random_seed.{what}")
            if seed < 0 and config.get(f"random_seed.default") >= 0:
                import hashlib

                # we add an md5 hash to the default seed so that different PRNGs get a
                # different seed
                seed = (
                    config.get(f"random_seed.default")
                    + int(hashlib.md5(what.encode()).hexdigest(), 16)
                ) % 0xFFFF  # stay 32-bit

            return seed

        if get_seed("python") > -1:
            import random

            random.seed(get_seed("python"))
        if get_seed("torch") > -1:
            import torch

            torch.manual_seed(get_seed("torch"))
        if get_seed("numpy") > -1:
            import numpy.random

            numpy.random.seed(get_seed("numpy"))
        if get_seed("numba") > -1:
            import numpy as np, numba

            @numba.njit
            def seed_numba(seed):
                np.random.seed(seed)

            seed_numba(get_seed("numba"))

        # let's go
        if args.command == "start" and not args.run:
            config.log("Job created successfully.")
        else:
            # load data
            dataset = Dataset.create(config)

            # let's go
            if args.command == "resume":
                if checkpoint_file is not None:
                    checkpoint = load_checkpoint(
                        checkpoint_file, config.get("job.device")
                    )
                    job = Job.create_from(
                        checkpoint, new_config=config, dataset=dataset
                    )
                else:
                    job = Job.create(config, dataset)
                    job.config.log(
                        "No checkpoint found or specified, starting from scratch..."
                    )
            else:
                job = Job.create(config, dataset)
            job.run()
    except BaseException:
        tb = traceback.format_exc()
        config.log(tb, echo=False)
        raise
Example #3
0
import unittest
from tests.util import get_dataset_folder
import sys
from kge.misc import kge_base_dir
import os
from os import path

sys.path.append(path.join(kge_base_dir(), "data/preprocess"))
from data.preprocess.util import analyze_raw_splits
from data.preprocess.util import RawDataset
from data.preprocess.util import Split
from data.preprocess.util import SampledSplit
from data.preprocess.util import FilteredSplit
from data.preprocess.util import RawSplit
from data.preprocess.util import write_dataset_yaml
from data.preprocess.util import process_splits

import yaml


class TestPreprocess(unittest.TestCase):
    def setUp(self) -> None:
        self.dataset_name = "dataset_preprocess"
        self.dataset_folder = get_dataset_folder(self.dataset_name)

    def tearDown(self) -> None:
        self.remove_del_files()

    def test_analyze_splits(self):
        raw_splits = TestPreprocess.get_raw_splits()
        raw_dataset: RawDataset = analyze_raw_splits(
Example #4
0
def get_dataset_folder(dataset_name):
    return os.path.join(kge_base_dir(), "tests", "data", dataset_name)
Example #5
0
def main():
    # default config
    config = Config()

    # now parse the arguments
    parser = create_parser(config)
    args, unknown_args = parser.parse_known_args()

    # If there where unknown args, add them to the parser and reparse. The correctness
    # of these arguments will be checked later.
    if len(unknown_args) > 0:
        parser = create_parser(
            config, filter(lambda a: a.startswith("--"), unknown_args)
        )
        args = parser.parse_args()

    # process meta-commands
    process_meta_command(args, "create", {"command": "start", "run": False})
    process_meta_command(args, "eval", {"command": "resume", "job.type": "eval"})
    process_meta_command(
        args, "test", {"command": "resume", "job.type": "eval", "eval.split": "test"}
    )
    process_meta_command(
        args, "valid", {"command": "resume", "job.type": "eval", "eval.split": "valid"}
    )
    # dump command
    if args.command == "dump":
        dump(args)
        exit()

    # start command
    if args.command == "start":
        # use toy config file if no config given
        if args.config is None:
            args.config = kge_base_dir() + "/" + "examples/toy-complex-train.yaml"
            print("WARNING: No configuration specified; using " + args.config)

        print("Loading configuration {}...".format(args.config))
        config.load(args.config)

    # resume command
    if args.command == "resume":
        if os.path.isdir(args.config) and os.path.isfile(args.config + "/config.yaml"):
            args.config += "/config.yaml"
        print("Resuming from configuration {}...".format(args.config))
        config.load(args.config)
        config.folder = os.path.dirname(args.config)
        if not config.folder:
            config.folder = "."
        if not os.path.exists(config.folder):
            raise ValueError(
                "{} is not a valid config file for resuming".format(args.config)
            )

    # overwrite configuration with command line arguments
    for key, value in vars(args).items():
        if key in [
            "command",
            "config",
            "run",
            "folder",
            "checkpoint",
            "abort_when_cache_outdated",
        ]:
            continue
        if value is not None:
            if key == "search.device_pool":
                value = "".join(value).split(",")
            try:
                if isinstance(config.get(key), bool):
                    value = argparse_bool_type(value)
            except KeyError:
                pass
            config.set(key, value)
            if key == "model":
                config._import(value)

    # initialize output folder
    if args.command == "start":
        if args.folder is None:  # means: set default
            config_name = os.path.splitext(os.path.basename(args.config))[0]
            config.folder = os.path.join(
                kge_base_dir(),
                "local",
                "experiments",
                datetime.datetime.now().strftime("%Y%m%d-%H%M%S") + "-" + config_name,
            )
        else:
            config.folder = args.folder

    # catch errors to log them
    try:
        if args.command == "start" and not config.init_folder():
            raise ValueError("output folder {} exists already".format(config.folder))
        config.log("Using folder: {}".format(config.folder))

        # determine checkpoint to resume (if any)
        if hasattr(args, "checkpoint"):
            if args.checkpoint == "default":
                if config.get("job.type") in ["eval", "valid"]:
                    checkpoint_file = config.checkpoint_file("best")
                else:
                    checkpoint_file = None  # means last
            elif is_number(args.checkpoint, int) or args.checkpoint == "best":
                checkpoint_file = config.checkpoint_file(args.checkpoint)
            else:
                # otherwise, treat it as a filename
                checkpoint_file = args.checkpoint

        # disable processing of outdated cached dataset files globally
        Dataset._abort_when_cache_outdated = args.abort_when_cache_outdated

        # log configuration
        config.log("Configuration:")
        config.log(yaml.dump(config.options), prefix="  ")
        config.log("git commit: {}".format(get_git_revision_short_hash()), prefix="  ")

        # set random seeds
        if config.get("random_seed.python") > -1:
            import random

            random.seed(config.get("random_seed.python"))
        if config.get("random_seed.torch") > -1:
            import torch

            torch.manual_seed(config.get("random_seed.torch"))
        if config.get("random_seed.numpy") > -1:
            import numpy.random

            numpy.random.seed(config.get("random_seed.numpy"))

        # let's go
        if args.command == "start" and not args.run:
            config.log("Job created successfully.")
        else:
            # load data
            dataset = Dataset.load(config)

            # let's go
            job = Job.create(config, dataset)
            if args.command == "resume":
                job.resume(checkpoint_file)
            job.run()
    except BaseException as e:
        tb = traceback.format_exc()
        config.log(tb, echo=False)
        raise e from None