def main(): info('merge-partitions.py', ['graph']) args = sanitize_epilog(get_parser()).parse_args() output_file = args.graphbase + '.pmap.merged' pmap_files = glob.glob(args.graphbase + '.subset.*.pmap') print('loading %d pmap files (first one: %s)' % (len(pmap_files), pmap_files[0]), file=sys.stderr) ksize = args.ksize nodegraph = khmer.Nodegraph(ksize, 1, 1) for _ in pmap_files: check_input_files(_, args.force) check_space(pmap_files, args.force) for pmap_file in pmap_files: print('merging', pmap_file, file=sys.stderr) nodegraph.merge_subset_from_disk(pmap_file) print('saving merged to', output_file, file=sys.stderr) nodegraph.save_partitionmap(output_file) if args.remove_subsets: print('removing pmap files', file=sys.stderr) for pmap_file in pmap_files: os.unlink(pmap_file)
def main(): info('count-median.py', ['diginorm']) args = sanitize_epilog(get_parser()).parse_args() htfile = args.countgraph input_filename = args.input output = args.output output_filename = str(output) infiles = [htfile, input_filename] for infile in infiles: check_input_files(infile, args.force) check_space(infiles, args.force) print('loading k-mer countgraph from', htfile, file=sys.stderr) countgraph = khmer.load_countgraph(htfile) ksize = countgraph.ksize() print('writing to', output_filename, file=sys.stderr) output = csv.writer(output) # write headers: output.writerow(['name', 'median', 'average', 'stddev', 'seqlen']) for record in screed.open(input_filename): seq = record.sequence.upper() if 'N' in seq: seq = seq.replace('N', 'A') if ksize <= len(seq): medn, ave, stdev = countgraph.get_median_count(seq) ave, stdev = [round(x, 9) for x in (ave, stdev)] output.writerow([record.name, medn, ave, stdev, len(seq)])
def main(): info('estimate_optimal_hash.py', ['counting']) args = sanitize_epilog(get_parser()).parse_args() N = args.N if args.M: M = args.M result = optimal_size(N, M=M) print("number of estimated distinct k-mers: ", N, file=sys.stderr) print("size of memory available to use: ", M, file=sys.stderr) print("optimal number of hash tables: ", result.num_htables, file=sys.stderr) print("optimal size of hash tables: ", result.htable_size, file=sys.stderr) print("estimated false positive rate: ", result.fp_rate, file=sys.stderr) print("estimated usage of memory: ", result.mem_use, file=sys.stderr) elif args.f: f = args.f result = optimal_size(N, f=f) print("number of estimated distinct k-mers: ", N, file=sys.stderr) print("desired maximum false positive rate: ", f, file=sys.stderr) print("optimal number of hash tables: ", result.num_htables, file=sys.stderr) print("optimal size of hash tables: ", result.htable_size, file=sys.stderr) print("estimated false positive rate: ", result.fp_rate, file=sys.stderr) print("estimated usage of memory: ", result.mem_use, file=sys.stderr) else: get_parser().error('No action requested, add -M (size of memory available to use) or -f (desired maximum false posotive rate)')
def main(): info('make-initial-stoptags.py', ['graph']) args = sanitize_epilog(get_parser()).parse_args() graphbase = args.graphbase # @RamRS: This might need some more work infiles = [graphbase, graphbase + '.tagset'] if args.stoptags: infiles.append(args.stoptags) for _ in infiles: check_input_files(_, args.force) print('loading nodegraph %s.pt' % graphbase, file=sys.stderr) nodegraph = khmer.load_nodegraph(graphbase) # do we want to load stop tags, and do they exist? if args.stoptags: print('loading stoptags from', args.stoptags, file=sys.stderr) nodegraph.load_stop_tags(args.stoptags) print('loading tagset %s.tagset...' % graphbase, file=sys.stderr) nodegraph.load_tagset(graphbase + '.tagset') counting = khmer_args.create_countgraph(args) # divide up into SUBSET_SIZE fragments divvy = nodegraph.divide_tags_into_subsets(args.subset_size) # pick off the first one if len(divvy) == 1: start, end = 0, 0 else: start, end = divvy[:2] # partition! print('doing pre-partitioning from', start, 'to', end, file=sys.stderr) subset = nodegraph.do_subset_partition(start, end) # now, repartition... print('repartitioning to find HCKs.', file=sys.stderr) nodegraph.repartition_largest_partition(subset, counting, EXCURSION_DISTANCE, EXCURSION_KMER_THRESHOLD, EXCURSION_KMER_COUNT_THRESHOLD) print('saving stop tags', file=sys.stderr) nodegraph.save_stop_tags(graphbase + '.stoptags') print('wrote to:', graphbase + '.stoptags', file=sys.stderr)
def main(): info('interleave-reads.py') args = sanitize_epilog(get_parser()).parse_args() check_input_files(args.left, args.force) check_input_files(args.right, args.force) check_space([args.left, args.right], args.force) s1_file = args.left s2_file = args.right fail = False print("Interleaving:\n\t%s\n\t%s" % (s1_file, s2_file), file=sys.stderr) outfp = get_file_writer(args.output, args.gzip, args.bzip) counter = 0 screed_iter_1 = screed.open(s1_file) screed_iter_2 = screed.open(s2_file) for read1, read2 in zip_longest(screed_iter_1, screed_iter_2): if read1 is None or read2 is None: print(("ERROR: Input files contain different number" " of records."), file=sys.stderr) sys.exit(1) if counter % 100000 == 0: print('...', counter, 'pairs', file=sys.stderr) counter += 1 name1 = read1.name if not check_is_left(name1): name1 += '/1' name2 = read2.name if not check_is_right(name2): name2 += '/2' read1.name = name1 read2.name = name2 if not check_is_pair(read1, read2): print("ERROR: This doesn't look like paired data! " "%s %s" % (read1.name, read2.name), file=sys.stderr) sys.exit(1) write_record_pair(read1, read2, outfp) print('final: interleaved %d pairs' % counter, file=sys.stderr) print('output written to', describe_file_handle(outfp), file=sys.stderr)
def main(): """Main function - run when executed as a script.""" parser = sanitize_epilog(get_parser()) args = parser.parse_args() total_bp = 0 total_seqs = 0 statistics = [] for filename in args.filenames: try: bps, seqs = analyze_file(filename) except (IOError, OSError, EOFError) as exc: print('ERROR in opening %s:' % filename, file=sys.stderr) print(' ', str(exc), file=sys.stderr) continue if seqs: statistics.append((bps, seqs, filename)) avg = bps / float(seqs) msg = '%d bps / %d seqs; %.1f average length -- %s' % (bps, seqs, avg, filename) print('... found', msg, file=sys.stderr) else: print('No sequences found in %s' % filename, file=sys.stderr) if statistics: if args.csv: formatter = CsvFormatter(args.outfp) else: formatter = StdFormatter(args.outfp) with StatisticsOutput(formatter) as out: for stat in statistics: out.append(*stat) else: print('No sequences found in %d files' % len(args.filenames), file=args.outfp)
def main(): info('filter-stoptags.py', ['graph']) args = sanitize_epilog(get_parser()).parse_args() stoptags = args.stoptags_file infiles = args.input_filenames for _ in infiles: check_input_files(_, args.force) check_space(infiles, args.force) print('loading stop tags, with K', args.ksize, file=sys.stderr) nodegraph = khmer.Nodegraph(args.ksize, 1, 1) nodegraph.load_stop_tags(stoptags) def process_fn(record): name = record['name'] seq = record['sequence'] if 'N' in seq: return None, None trim_seq, trim_at = nodegraph.trim_on_stoptags(seq) if trim_at >= args.ksize: return name, trim_seq return None, None # the filtering loop for infile in infiles: print('filtering', infile, file=sys.stderr) outfile = os.path.basename(infile) + '.stopfilt' outfp = open(outfile, 'w') tsp = ThreadedSequenceProcessor(process_fn) tsp.start(verbose_loader(infile), outfp) print('output in', outfile, file=sys.stderr)
def main(): info('unique-kmers.py', ['SeqAn', 'hll']) args = sanitize_epilog(get_parser()).parse_args() total_hll = khmer.HLLCounter(args.error_rate, args.ksize) report_fp = args.report input_filename = None for index, input_filename in enumerate(args.input_filenames): hllcpp = khmer.HLLCounter(args.error_rate, args.ksize) hllcpp.consume_fasta(input_filename, stream_records=args.stream_records) cardinality = hllcpp.estimate_cardinality() print('Estimated number of unique {0}-mers in {1}: {2}'.format( args.ksize, input_filename, cardinality), file=sys.stderr) if report_fp: print(cardinality, args.ksize, '(total)', file=report_fp) report_fp.flush() total_hll.merge(hllcpp) cardinality = total_hll.estimate_cardinality() print('Total estimated number of unique {0}-mers: {1}'.format( args.ksize, cardinality), file=sys.stderr) to_print = graphsize_args_report(cardinality, args.error_rate) if args.diagnostics: print(to_print, file=sys.stderr) if report_fp: print(cardinality, args.ksize, 'total', file=report_fp) print(to_print, file=report_fp) report_fp.flush()
def main(): info('filter-abund-single.py', ['counting', 'SeqAn']) args = sanitize_epilog(get_parser()).parse_args() check_input_files(args.datafile, args.force) check_space([args.datafile], args.force) if args.savegraph: tablesize = calculate_graphsize(args, 'countgraph') check_space_for_graph(args.savegraph, tablesize, args.force) report_on_config(args) print('making countgraph', file=sys.stderr) graph = khmer_args.create_countgraph(args) # first, load reads into graph rparser = khmer.ReadParser(args.datafile) threads = [] print('consuming input, round 1 --', args.datafile, file=sys.stderr) for _ in range(args.threads): cur_thread = \ threading.Thread( target=graph.consume_fasta_with_reads_parser, args=(rparser, ) ) threads.append(cur_thread) cur_thread.start() for _ in threads: _.join() print('Total number of unique k-mers: {0}'.format( graph.n_unique_kmers()), file=sys.stderr) fp_rate = khmer.calc_expected_collisions(graph, args.force) print('fp rate estimated to be %1.3f' % fp_rate, file=sys.stderr) # now, trim. # the filtering function. def process_fn(record): name = record.name seq = record.sequence seqN = seq.replace('N', 'A') _, trim_at = graph.trim_on_abundance(seqN, args.cutoff) if trim_at >= args.ksize: # be sure to not to change the 'N's in the trimmed sequence - # so, return 'seq' and not 'seqN'. return name, seq[:trim_at] return None, None # the filtering loop print('filtering', args.datafile, file=sys.stderr) outfile = os.path.basename(args.datafile) + '.abundfilt' outfile = open(outfile, 'wb') outfp = get_file_writer(outfile, args.gzip, args.bzip) tsp = ThreadedSequenceProcessor(process_fn) tsp.start(verbose_loader(args.datafile), outfp) print('output in', outfile, file=sys.stderr) if args.savegraph: print('Saving k-mer countgraph filename', args.savegraph, file=sys.stderr) print('...saving to', args.savegraph, file=sys.stderr) graph.save(args.savegraph) print('wrote to: ', outfile, file=sys.stderr)
def main(): # pylint: disable=too-many-branches,too-many-statements info('saturate-by-median.py', ['diginorm']) parser = sanitize_epilog(get_parser()) args = parser.parse_args() report_on_config(args) report_fp = args.report report_frequency = args.report_frequency check_valid_file_exists(args.input_filenames) check_space(args.input_filenames, False) if args.savegraph: check_space_for_graph(args, 'countgraph', False) # list to save error files along with throwing exceptions if args.force: corrupt_files = [] if args.loadgraph: print('loading k-mer countgraph from', args.loadgraph) htable = khmer.load_countgraph(args.loadgraph) else: print('making countgraph') htable = create_countgraph(args) total = 0 discarded = 0 for index, input_filename in enumerate(args.input_filenames): total_acc = 0 discarded_acc = 0 try: total_acc, discarded_acc = normalize_by_median(input_filename, htable, args, report_fp, report_frequency) except IOError as err: handle_error(err, input_filename) if not args.force: print("NOTE: This can be overridden using the --force" " argument", file=sys.stderr) print('** Exiting!', file=sys.stderr) sys.exit(1) else: print('*** Skipping error file, moving on...', file=sys.stderr) corrupt_files.append(input_filename) else: if total_acc == 0 and discarded_acc == 0: print('SKIPPED empty file', input_filename) else: total += total_acc discarded += discarded_acc print('DONE with {inp}; kept {kept} of {total} or {perc:2}%'\ .format(inp=input_filename, kept=total - discarded, total=total, perc=int(100. - discarded / float(total) * 100.))) if args.savegraph: print('Saving k-mer countgraph through', input_filename) print('...saving to', args.savegraph) htable.save(args.savegraph) # re: threshold, see Zhang et al., # http://arxiv.org/abs/1309.2975 fp_rate = khmer.calc_expected_collisions(htable, args.force, max_false_pos=.8) print('fp rate estimated to be {fpr:1.3f}'.format(fpr=fp_rate)) if args.force and len(corrupt_files) > 0: print("** WARNING: Finished with errors!", file=sys.stderr) print("** I/O Errors occurred in the following files:", file=sys.stderr) print("\t", " ".join(corrupt_files), file=sys.stderr)
def main(): info('correct-reads.py', ['streaming']) args = sanitize_epilog(get_parser()).parse_args() ### if len(set(args.input_filenames)) != len(args.input_filenames): print >>sys.stderr, \ "Error: Cannot input the same filename multiple times." sys.exit(1) ### report_on_config(args) check_valid_file_exists(args.input_filenames) check_space(args.input_filenames, args.force) if args.savegraph: check_space_for_graph( args.n_tables * args.min_tablesize, args.force) K = args.ksize CUTOFF = args.cutoff NORMALIZE_LIMIT = args.normalize_to if args.loadgraph: print >>sys.stderr, 'loading k-mer countgraph from', args.loadgraph ct = khmer.load_countgraph(args.loadgraph) else: print >>sys.stderr, 'making k-mer countgraph' ct = khmer.new_countgraph(K, args.min_tablesize, args.n_tables) tempdir = tempfile.mkdtemp('khmer', 'tmp', args.tempdir) print >>sys.stderr, 'created temporary directory %s; ' \ 'use -T to change location' % tempdir aligner = khmer.ReadAligner(ct, args.cutoff, args.bits_theta) # ### FIRST PASS ### save_pass2_total = 0 n_bp = 0 n_reads = 0 written_bp = 0 written_reads = 0 corrected_reads = 0 pass2list = [] for filename in args.input_filenames: pass2filename = os.path.basename(filename) + '.pass2' pass2filename = os.path.join(tempdir, pass2filename) if args.out is None: corrfp = open(os.path.basename(filename) + '.corr', 'w') else: corrfp = args.out pass2list.append((filename, pass2filename, corrfp)) screed_iter = screed.open(filename, parse_description=False) pass2fp = open(pass2filename, 'w') save_pass2 = 0 n = 0 paired_iter = broken_paired_reader(screed_iter, min_length=K, force_single=args.ignore_pairs) for n, is_pair, read1, read2 in paired_iter: if n % 10000 == 0: print >>sys.stderr, '...', n, filename, save_pass2, \ n_reads, n_bp, written_reads, written_bp # we want to track paired reads here, to make sure that pairs # are not split between first pass and second pass. if is_pair: n_reads += 2 n_bp += len(read1.sequence) + len(read2.sequence) seq1 = read1.sequence.replace('N', 'A') seq2 = read2.sequence.replace('N', 'A') med1, _, _ = ct.get_median_count(seq1) med2, _, _ = ct.get_median_count(seq2) if med1 < NORMALIZE_LIMIT or med2 < NORMALIZE_LIMIT: ct.consume(seq1) ct.consume(seq2) write_record_pair(read1, read2, pass2fp) save_pass2 += 2 else: is_aligned, new_seq1 = correct_sequence(aligner, seq1) if is_aligned: if new_seq1 != read1.sequence: corrected_reads += 1 read1.sequence = new_seq1 if hasattr(read1, 'quality'): fix_quality(read1) is_aligned, new_seq2 = correct_sequence(aligner, seq2) if is_aligned: if new_seq2 != read2.sequence: corrected_reads += 1 read2.sequence = new_seq2 if hasattr(read2, 'quality'): fix_quality(read2) write_record_pair(read1, read2, corrfp) written_reads += 2 written_bp += len(read1) written_bp += len(read2) else: n_reads += 1 n_bp += len(read1.sequence) seq = read1.sequence.replace('N', 'A') med, _, _ = ct.get_median_count(seq) # has this portion of the graph saturated? if not, # consume & save => pass2. if med < NORMALIZE_LIMIT: ct.consume(seq) write_record(read1, pass2fp) save_pass2 += 1 else: # trim!! is_aligned, new_seq = correct_sequence(aligner, seq) if is_aligned: if new_seq != read1.sequence: corrected_reads += 1 read1.sequence = new_seq if hasattr(read1, 'quality'): fix_quality(read1) write_record(read1, corrfp) written_reads += 1 written_bp += len(new_seq) pass2fp.close() print >>sys.stderr, '%s: kept aside %d of %d from first pass, in %s' \ % (filename, save_pass2, n, filename) save_pass2_total += save_pass2 # ### SECOND PASS. ### skipped_n = 0 skipped_bp = 0 for _, pass2filename, corrfp in pass2list: print >>sys.stderr, ('second pass: looking at sequences kept aside ' 'in %s') % pass2filename # note that for this second pass, we don't care about paired # reads - they will be output in the same order they're read in, # so pairs will stay together if not orphaned. This is in contrast # to the first loop. for n, read in enumerate(screed.open(pass2filename, parse_description=False)): if n % 10000 == 0: print >>sys.stderr, '... x 2', n, pass2filename, \ written_reads, written_bp seq = read.sequence.replace('N', 'A') med, _, _ = ct.get_median_count(seq) # do we retain low-abundance components unchanged? if med < NORMALIZE_LIMIT and args.variable_coverage: write_record(read, corrfp) written_reads += 1 written_bp += len(read.sequence) skipped_n += 1 skipped_bp += len(read.sequence) # otherwise, examine/correct. else: # med >= NORMALIZE LIMIT or not args.variable_coverage is_aligned, new_seq = correct_sequence(aligner, seq) if is_aligned: if new_seq != read.sequence: corrected_reads += 1 read.sequence = new_seq if hasattr(read, 'quality'): fix_quality(read) write_record(read, corrfp) written_reads += 1 written_bp += len(new_seq) print >>sys.stderr, 'removing %s' % pass2filename os.unlink(pass2filename) print >>sys.stderr, 'removing temp directory & contents (%s)' % tempdir shutil.rmtree(tempdir) n_passes = 1.0 + (float(save_pass2_total) / n_reads) percent_reads_corrected = float(corrected_reads + (n_reads - written_reads)) /\ n_reads * 100.0 print >>sys.stderr, 'read %d reads, %d bp' % (n_reads, n_bp,) print >>sys.stderr, 'wrote %d reads, %d bp' % (written_reads, written_bp,) print >>sys.stderr, 'looked at %d reads twice (%.2f passes)' % \ (save_pass2_total, n_passes) print >>sys.stderr, 'removed %d reads and corrected %d reads (%.2f%%)' % \ (n_reads - written_reads, corrected_reads, percent_reads_corrected) print >>sys.stderr, 'removed %.2f%% of bases (%d total)' % \ ((1 - (written_bp / float(n_bp))) * 100.0, n_bp - written_bp) if args.variable_coverage: percent_reads_hicov = 100.0 * float(n_reads - skipped_n) / n_reads print >>sys.stderr, '%d reads were high coverage (%.2f%%);' % \ (n_reads - skipped_n, percent_reads_hicov) print >>sys.stderr, ('skipped %d reads/%d bases because of low' 'coverage') % (skipped_n, skipped_bp) fp_rate = \ khmer.calc_expected_collisions(ct, args.force, max_false_pos=.8) # for max_false_pos see Zhang et al., http://arxiv.org/abs/1309.2975 print >>sys.stderr, \ 'fp rate estimated to be {fpr:1.3f}'.format(fpr=fp_rate) print >>sys.stderr, 'output in *.corr' if args.savegraph: print >>sys.stderr, "Saving k-mer countgraph to", args.savegraph ct.save(args.savegraph)
def main(): info("sample-reads-randomly.py") args = sanitize_epilog(get_parser()).parse_args() for _ in args.filenames: check_input_files(_, args.force) # seed the random number generator? if args.random_seed: random.seed(args.random_seed) # bound n_samples num_samples = max(args.num_samples, 1) # # Figure out what the output filename is going to be if args.output_file: output_filename = args.output_file.name if num_samples > 1: sys.stderr.write("Error: cannot specify -o with more than one sample.") if not args.force: print("NOTE: This can be overridden using the --force" " argument", file=sys.stderr) sys.exit(1) else: filename = args.filenames[0] if filename in ("/dev/stdin", "-"): print("Accepting input from stdin; output filename must " "be provided with '-o'.", file=sys.stderr) sys.exit(1) output_filename = os.path.basename(filename) + ".subset" if num_samples == 1: print("Subsampling %d reads using reservoir sampling." % args.num_reads, file=sys.stderr) print("Subsampled reads will be placed in %s" % output_filename, file=sys.stderr) print("", file=sys.stderr) else: # > 1 print( "Subsampling %d reads, %d times," % (args.num_reads, num_samples), " using reservoir sampling.", file=sys.stderr, ) print("Subsampled reads will be placed in %s.N" % output_filename, file=sys.stderr) print("", file=sys.stderr) reads = [] for n in range(num_samples): reads.append([]) # read through all the sequences and load/resample the reservoir for filename in args.filenames: print("opening", filename, "for reading", file=sys.stderr) screed_iter = screed.open(filename) for count, (_, ispair, rcrd1, rcrd2) in enumerate( broken_paired_reader(screed_iter, force_single=args.force_single) ): if count % 10000 == 0: print("...", count, "reads scanned", file=sys.stderr) if count >= args.max_reads: print("reached upper limit of %d reads" % args.max_reads, "(see -M); exiting", file=sys.stderr) break # collect first N reads if count < args.num_reads: for n in range(num_samples): reads[n].append((rcrd1, rcrd2)) else: assert len(reads[n]) <= count # use reservoir sampling to replace reads at random # see http://en.wikipedia.org/wiki/Reservoir_sampling for n in range(num_samples): guess = random.randint(1, count) if guess <= args.num_reads: reads[n][guess - 1] = (rcrd1, rcrd2) # output all the subsampled reads: if len(reads) == 1: print("Writing %d sequences to %s" % (len(reads[0]), output_filename), file=sys.stderr) output_file = args.output_file if not output_file: output_file = open(output_filename, "wb") output_file = get_file_writer(output_file, args.gzip, args.bzip) for records in reads[0]: write_record(records[0], output_file) if records[1] is not None: write_record(records[1], output_file) else: for n in range(num_samples): n_filename = output_filename + ".%d" % n print("Writing %d sequences to %s" % (len(reads[n]), n_filename), file=sys.stderr) output_file = get_file_writer(open(n_filename, "wb"), args.gzip, args.bzip) for records in reads[n]: write_record(records[0], output_file) if records[1] is not None: write_record(records[1], output_file)
def main(): # pylint: disable=too-many-locals,too-many-statements info('do-partition.py', ['graph']) args = sanitize_epilog(get_parser()).parse_args() report_on_config(args, graphtype='nodegraph') for infile in args.input_filenames: check_input_files(infile, args.force) check_space(args.input_filenames, args.force) print('Saving k-mer nodegraph to %s' % args.graphbase, file=sys.stderr) print('Loading kmers from sequences in %s' % repr(args.input_filenames), file=sys.stderr) print('--', file=sys.stderr) print('SUBSET SIZE', args.subset_size, file=sys.stderr) print('N THREADS', args.threads, file=sys.stderr) print('--', file=sys.stderr) # load-graph.py print('making nodegraph', file=sys.stderr) nodegraph = khmer_args.create_nodegraph(args) for _, filename in enumerate(args.input_filenames): print('consuming input', filename, file=sys.stderr) nodegraph.consume_fasta_and_tag(filename) # 0.18 is ACTUAL MAX. Do not change. fp_rate = \ khmer.calc_expected_collisions( nodegraph, args.force, max_false_pos=.15) print('fp rate estimated to be %1.3f' % fp_rate, file=sys.stderr) # partition-graph # do we want to exhaustively traverse the graph? stop_big_traversals = args.no_big_traverse if stop_big_traversals: print('** This script brakes for lumps: ', 'stop_big_traversals is true.', file=sys.stderr) else: print('** Traverse all the things:', ' stop_big_traversals is false.', file=sys.stderr) # # now, partition! # # divide the tags up into subsets divvy = nodegraph.divide_tags_into_subsets(int(args.subset_size)) n_subsets = len(divvy) divvy.append(0) # build a queue of tasks: worker_q = queue.Queue() # break up the subsets into a list of worker tasks for _ in range(0, n_subsets): start = divvy[_] end = divvy[_ + 1] worker_q.put((nodegraph, _, start, end)) print('enqueued %d subset tasks' % n_subsets, file=sys.stderr) open('%s.info' % args.graphbase, 'w').write('%d subsets total\n' % (n_subsets)) if n_subsets < args.threads: args.threads = n_subsets # start threads! print('starting %d threads' % args.threads, file=sys.stderr) print('---', file=sys.stderr) threads = [] for _ in range(args.threads): cur_thread = threading.Thread(target=worker, args=(worker_q, args.graphbase, stop_big_traversals)) threads.append(cur_thread) cur_thread.start() assert threading.active_count() == args.threads + 1 print('done starting threads', file=sys.stderr) # wait for threads for _ in threads: _.join() print('---', file=sys.stderr) print('done making subsets! see %s.subset.*.pmap' % (args.graphbase,), file=sys.stderr) # merge-partitions pmap_files = glob.glob(args.graphbase + '.subset.*.pmap') print('loading %d pmap files (first one: %s)' % (len(pmap_files), pmap_files[0]), file=sys.stderr) nodegraph = khmer.Nodegraph(args.ksize, 1, 1) for pmap_file in pmap_files: print('merging', pmap_file, file=sys.stderr) nodegraph.merge_subset_from_disk(pmap_file) if args.remove_subsets: print('removing pmap files', file=sys.stderr) for pmap_file in pmap_files: os.unlink(pmap_file) # annotate-partitions for infile in args.input_filenames: print('outputting partitions for', infile, file=sys.stderr) outfile = os.path.basename(infile) + '.part' part_count = nodegraph.output_partitions(infile, outfile) print('output %d partitions for %s' % ( part_count, infile), file=sys.stderr) print('partitions are in', outfile, file=sys.stderr)
def main(): # pylint: disable=too-many-locals,too-many-branches info('extract-partitions.py', ['graph']) args = sanitize_epilog(get_parser()).parse_args() distfilename = args.prefix + '.dist' n_unassigned = 0 for infile in args.part_filenames: check_input_files(infile, args.force) check_space(args.part_filenames, args.force) print('---', file=sys.stderr) print('reading partitioned files:', repr( args.part_filenames), file=sys.stderr) if args.output_groups: print('outputting to files named "%s.groupN.fa"' % args.prefix, file=sys.stderr) print('min reads to keep a partition:', args.min_part_size, file=sys.stderr) print('max size of a group file:', args.max_size, file=sys.stderr) else: print('NOT outputting groups! Beware!', file=sys.stderr) if args.output_unassigned: print('outputting unassigned reads to "%s.unassigned.fa"' % args.prefix, file=sys.stderr) print('partition size distribution will go to %s' % distfilename, file=sys.stderr) print('---', file=sys.stderr) # suffix = 'fa' is_fastq = False for index, read, pid in read_partition_file(args.part_filenames[0]): if hasattr(read, 'quality'): suffix = 'fq' is_fastq = True break for filename in args.part_filenames: for index, read, pid in read_partition_file(filename): if is_fastq: assert hasattr(read, 'quality'), \ "all input files must be FASTQ if the first one is" else: assert not hasattr(read, 'quality'), \ "all input files must be FASTA if the first one is" break if args.output_unassigned: ofile = open('%s.unassigned.%s' % (args.prefix, suffix), 'wb') unassigned_fp = get_file_writer(ofile, args.gzip, args.bzip) count = {} for filename in args.part_filenames: for index, read, pid in read_partition_file(filename): if index % 100000 == 0: print('...', index, file=sys.stderr) count[pid] = count.get(pid, 0) + 1 if pid == 0: n_unassigned += 1 if args.output_unassigned: write_record(read, unassigned_fp) if args.output_unassigned: unassigned_fp.close() if 0 in count: # eliminate unpartitioned sequences del count[0] # develop histogram of partition sizes dist = {} for pid, size in list(count.items()): dist[size] = dist.get(size, 0) + 1 # output histogram distfp = open(distfilename, 'w') total = 0 wtotal = 0 for counter, index in sorted(dist.items()): total += index wtotal += counter * index distfp.write('%d %d %d %d\n' % (counter, index, total, wtotal)) distfp.close() if not args.output_groups: sys.exit(0) # sort groups by size divvy = sorted(list(count.items()), key=lambda y: y[1]) divvy = [y for y in divvy if y[1] > args.min_part_size] # divvy up into different groups, based on having max_size sequences # in each group. total = 0 group = set() group_n = 0 group_d = {} for partition_id, n_reads in divvy: group.add(partition_id) total += n_reads if total > args.max_size: for partition_id in group: group_d[partition_id] = group_n # print 'group_d', partition_id, group_n group_n += 1 group = set() total = 0 if group: for partition_id in group: group_d[partition_id] = group_n # print 'group_d', partition_id, group_n group_n += 1 print('%d groups' % group_n, file=sys.stderr) if group_n == 0: print('nothing to output; exiting!', file=sys.stderr) return # open a bunch of output files for the different groups group_fps = {} for index in range(group_n): fname = '%s.group%04d.%s' % (args.prefix, index, suffix) group_fp = get_file_writer(open(fname, 'wb'), args.gzip, args.bzip) group_fps[index] = group_fp # write 'em all out! total_seqs = 0 part_seqs = 0 toosmall_parts = 0 for filename in args.part_filenames: for index, read, partition_id in read_partition_file(filename): total_seqs += 1 if index % 100000 == 0: print('...x2', index, file=sys.stderr) if partition_id == 0: continue try: group_n = group_d[partition_id] except KeyError: assert count[partition_id] <= args.min_part_size toosmall_parts += 1 continue outfp = group_fps[group_n] write_record(read, outfp) part_seqs += 1 print('---', file=sys.stderr) print('Of %d total seqs,' % total_seqs, file=sys.stderr) print('extracted %d partitioned seqs into group files,' % part_seqs, file=sys.stderr) print('discarded %d sequences from small partitions (see -m),' % toosmall_parts, file=sys.stderr) print('and found %d unpartitioned sequences (see -U).' % n_unassigned, file=sys.stderr) print('', file=sys.stderr) print('Created %d group files named %s.groupXXXX.%s' % (len(group_fps), args.prefix, suffix), file=sys.stderr)
def main(): info('partition-graph.py', ['graph']) args = sanitize_epilog(get_parser()).parse_args() basename = args.basename filenames = [basename, basename + '.tagset'] for _ in filenames: check_input_files(_, args.force) print('--', file=sys.stderr) print('SUBSET SIZE', args.subset_size, file=sys.stderr) print('N THREADS', args.threads, file=sys.stderr) if args.stoptags: print('stoptag file:', args.stoptags, file=sys.stderr) print('--', file=sys.stderr) print('loading nodegraph %s' % basename, file=sys.stderr) nodegraph = khmer.load_nodegraph(basename) nodegraph.load_tagset(basename + '.tagset') # do we want to load stop tags, and do they exist? if args.stoptags: print('loading stoptags from', args.stoptags, file=sys.stderr) nodegraph.load_stop_tags(args.stoptags) # do we want to exhaustively traverse the graph? stop_big_traversals = args.no_big_traverse if stop_big_traversals: print('** This script brakes for lumps:', ' stop_big_traversals is true.', file=sys.stderr) else: print('** Traverse all the things:', ' stop_big_traversals is false.', file=sys.stderr) # # now, partition! # # divide the tags up into subsets divvy = nodegraph.divide_tags_into_subsets(int(args.subset_size)) n_subsets = len(divvy) divvy.append(0) # build a queue of tasks: worker_q = queue.Queue() # break up the subsets into a list of worker tasks for _ in range(0, n_subsets): start = divvy[_] end = divvy[_ + 1] worker_q.put((nodegraph, _, start, end)) print('enqueued %d subset tasks' % n_subsets, file=sys.stderr) open('%s.info' % basename, 'w').write('%d subsets total\n' % (n_subsets)) n_threads = args.threads if n_subsets < n_threads: n_threads = n_subsets # start threads! print('starting %d threads' % n_threads, file=sys.stderr) print('---', file=sys.stderr) threads = [] for _ in range(n_threads): cur_thrd = threading.Thread(target=worker, args=(worker_q, basename, stop_big_traversals)) threads.append(cur_thrd) cur_thrd.start() print('done starting threads', file=sys.stderr) # wait for threads for _ in threads: _.join() print('---', file=sys.stderr) print('done making subsets! see %s.subset.*.pmap' % (basename,), file=sys.stderr)
def main(): info('trim-low-abund.py', ['streaming']) parser = sanitize_epilog(get_parser()) args = parser.parse_args() ### if len(set(args.input_filenames)) != len(args.input_filenames): print("Error: Cannot input the same filename multiple times.", file=sys.stderr) sys.exit(1) ### report_on_config(args) check_valid_file_exists(args.input_filenames) check_space(args.input_filenames, args.force) if args.savegraph: graphsize = calculate_graphsize(args, 'countgraph') check_space_for_graph(args.savegraph, graphsize, args.force) if ('-' in args.input_filenames or '/dev/stdin' in args.input_filenames) \ and not args.output: print("Accepting input from stdin; output filename must " "be provided with -o.", file=sys.stderr) sys.exit(1) if args.loadgraph: print('loading countgraph from', args.loadgraph, file=sys.stderr) ct = khmer.load_countgraph(args.loadgraph) else: print('making countgraph', file=sys.stderr) ct = khmer_args.create_countgraph(args) K = ct.ksize() CUTOFF = args.cutoff NORMALIZE_LIMIT = args.normalize_to tempdir = tempfile.mkdtemp('khmer', 'tmp', args.tempdir) print('created temporary directory %s; ' 'use -T to change location' % tempdir, file=sys.stderr) # ### FIRST PASS ### save_pass2_total = 0 n_bp = 0 n_reads = 0 written_bp = 0 written_reads = 0 trimmed_reads = 0 pass2list = [] for filename in args.input_filenames: pass2filename = os.path.basename(filename) + '.pass2' pass2filename = os.path.join(tempdir, pass2filename) if args.output is None: trimfp = get_file_writer(open(os.path.basename(filename) + '.abundtrim', 'wb'), args.gzip, args.bzip) else: trimfp = get_file_writer(args.output, args.gzip, args.bzip) pass2list.append((filename, pass2filename, trimfp)) screed_iter = screed.open(filename) pass2fp = open(pass2filename, 'w') save_pass2 = 0 n = 0 paired_iter = broken_paired_reader(screed_iter, min_length=K, force_single=args.ignore_pairs) for n, is_pair, read1, read2 in paired_iter: if n % 10000 == 0: print('...', n, filename, save_pass2, n_reads, n_bp, written_reads, written_bp, file=sys.stderr) # we want to track paired reads here, to make sure that pairs # are not split between first pass and second pass. if is_pair: n_reads += 2 n_bp += len(read1.sequence) + len(read2.sequence) seq1 = read1.sequence.replace('N', 'A') seq2 = read2.sequence.replace('N', 'A') med1, _, _ = ct.get_median_count(seq1) med2, _, _ = ct.get_median_count(seq2) if med1 < NORMALIZE_LIMIT or med2 < NORMALIZE_LIMIT: ct.consume(seq1) ct.consume(seq2) write_record_pair(read1, read2, pass2fp) save_pass2 += 2 else: _, trim_at1 = ct.trim_on_abundance(seq1, CUTOFF) _, trim_at2 = ct.trim_on_abundance(seq2, CUTOFF) if trim_at1 >= K: read1 = trim_record(read1, trim_at1) if trim_at2 >= K: read2 = trim_record(read2, trim_at2) if trim_at1 != len(seq1): trimmed_reads += 1 if trim_at2 != len(seq2): trimmed_reads += 1 write_record_pair(read1, read2, trimfp) written_reads += 2 written_bp += trim_at1 + trim_at2 else: n_reads += 1 n_bp += len(read1.sequence) seq = read1.sequence.replace('N', 'A') med, _, _ = ct.get_median_count(seq) # has this portion of the graph saturated? if not, # consume & save => pass2. if med < NORMALIZE_LIMIT: ct.consume(seq) write_record(read1, pass2fp) save_pass2 += 1 else: # trim!! _, trim_at = ct.trim_on_abundance(seq, CUTOFF) if trim_at >= K: new_read = trim_record(read1, trim_at) write_record(new_read, trimfp) written_reads += 1 written_bp += trim_at if trim_at != len(read1.sequence): trimmed_reads += 1 pass2fp.close() print('%s: kept aside %d of %d from first pass, in %s' % (filename, save_pass2, n, filename), file=sys.stderr) save_pass2_total += save_pass2 # ### SECOND PASS. ### skipped_n = 0 skipped_bp = 0 for _, pass2filename, trimfp in pass2list: print('second pass: looking at sequences kept aside in %s' % pass2filename, file=sys.stderr) # note that for this second pass, we don't care about paired # reads - they will be output in the same order they're read in, # so pairs will stay together if not orphaned. This is in contrast # to the first loop. for n, read in enumerate(screed.open(pass2filename)): if n % 10000 == 0: print('... x 2', n, pass2filename, written_reads, written_bp, file=sys.stderr) seq = read.sequence.replace('N', 'A') med, _, _ = ct.get_median_count(seq) # do we retain low-abundance components unchanged? if med < NORMALIZE_LIMIT and args.variable_coverage: write_record(read, trimfp) written_reads += 1 written_bp += len(read.sequence) skipped_n += 1 skipped_bp += len(read.sequence) # otherwise, examine/trim/truncate. else: # med >= NORMALIZE LIMIT or not args.variable_coverage _, trim_at = ct.trim_on_abundance(seq, CUTOFF) if trim_at >= K: new_read = trim_record(read, trim_at) write_record(new_read, trimfp) written_reads += 1 written_bp += trim_at if trim_at != len(read.sequence): trimmed_reads += 1 print('removing %s' % pass2filename, file=sys.stderr) os.unlink(pass2filename) print('removing temp directory & contents (%s)' % tempdir, file=sys.stderr) shutil.rmtree(tempdir) n_passes = 1.0 + (float(save_pass2_total) / n_reads) percent_reads_trimmed = float(trimmed_reads + (n_reads - written_reads)) /\ n_reads * 100.0 print('read %d reads, %d bp' % (n_reads, n_bp,), file=sys.stderr) print('wrote %d reads, %d bp' % (written_reads, written_bp,), file=sys.stderr) print('looked at %d reads twice (%.2f passes)' % (save_pass2_total, n_passes), file=sys.stderr) print('removed %d reads and trimmed %d reads (%.2f%%)' % (n_reads - written_reads, trimmed_reads, percent_reads_trimmed), file=sys.stderr) print('trimmed or removed %.2f%% of bases (%d total)' % ((1 - (written_bp / float(n_bp))) * 100.0, n_bp - written_bp), file=sys.stderr) if args.variable_coverage: percent_reads_hicov = 100.0 * float(n_reads - skipped_n) / n_reads print('%d reads were high coverage (%.2f%%);' % (n_reads - skipped_n, percent_reads_hicov), file=sys.stderr) print('skipped %d reads/%d bases because of low coverage' % (skipped_n, skipped_bp), file=sys.stderr) fp_rate = \ khmer.calc_expected_collisions(ct, args.force, max_false_pos=.8) # for max_false_pos see Zhang et al., http://arxiv.org/abs/1309.2975 print('fp rate estimated to be {fpr:1.3f}'.format(fpr=fp_rate), file=sys.stderr) print('output in *.abundtrim', file=sys.stderr) if args.savegraph: print("Saving k-mer countgraph to", args.savegraph, file=sys.stderr) ct.save(args.savegraph)
def main(): info('filter-abund.py', ['counting']) args = sanitize_epilog(get_parser()).parse_args() check_input_files(args.input_graph, args.force) infiles = args.input_filename if ('-' in infiles or '/dev/stdin' in infiles) and not \ args.single_output_file: print("Accepting input from stdin; output filename must " "be provided with -o.", file=sys.stderr) sys.exit(1) for filename in infiles: check_input_files(filename, args.force) check_space(infiles, args.force) print('loading countgraph:', args.input_graph, file=sys.stderr) countgraph = khmer.load_countgraph(args.input_graph) ksize = countgraph.ksize() print("K:", ksize, file=sys.stderr) # the filtering function. def process_fn(record): name = record.name seq = record.sequence seqN = seq.replace('N', 'A') if args.variable_coverage: # only trim when sequence has high enough C med, _, _ = countgraph.get_median_count(seqN) if med < args.normalize_to: return name, seq _, trim_at = countgraph.trim_on_abundance(seqN, args.cutoff) if trim_at >= ksize: # be sure to not to change the 'N's in the trimmed sequence - # so, return 'seq' and not 'seqN'. return name, seq[:trim_at] return None, None if args.single_output_file: outfile = args.single_output_file.name outfp = get_file_writer(outfile, args.gzip, args.bzip) # the filtering loop for infile in infiles: print('filtering', infile, file=sys.stderr) if args.single_output_file: outfile = args.single_output_file.name outfp = get_file_writer(args.single_output_file, args.gzip, args.bzip) else: outfile = os.path.basename(infile) + '.abundfilt' outfp = open(outfile, 'wb') outfp = get_file_writer(outfp, args.gzip, args.bzip) tsp = ThreadedSequenceProcessor(process_fn, n_workers=args.threads) tsp.start(verbose_loader(infile), outfp) print('output in', outfile, file=sys.stderr)
def main(): info('extract-paired-reads.py') args = sanitize_epilog(get_parser()).parse_args() infile = args.infile check_input_files(infile, args.force) check_space([infile], args.force) # decide where to put output files - specific directory? or just default? if infile in ('/dev/stdin', '-'): if not (args.output_paired and args.output_single): print("Accepting input from stdin; output filenames must be " "provided.", file=sys.stderr) sys.exit(1) elif args.output_dir: if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) out1 = args.output_dir + '/' + os.path.basename(infile) + '.se' out2 = args.output_dir + '/' + os.path.basename(infile) + '.pe' else: out1 = os.path.basename(infile) + '.se' out2 = os.path.basename(infile) + '.pe' # OVERRIDE default output file locations with -p, -s if args.output_paired: paired_fp = get_file_writer(args.output_paired, args.gzip, args.bzip) out2 = paired_fp.name else: # Don't override, just open the default filename from above paired_fp = get_file_writer(open(out2, 'wb'), args.gzip, args.bzip) if args.output_single: single_fp = get_file_writer(args.output_single, args.gzip, args.bzip) out1 = args.output_single.name else: # Don't override, just open the default filename from above single_fp = get_file_writer(open(out1, 'wb'), args.gzip, args.bzip) print('reading file "%s"' % infile, file=sys.stderr) print('outputting interleaved pairs to "%s"' % out2, file=sys.stderr) print('outputting orphans to "%s"' % out1, file=sys.stderr) n_pe = 0 n_se = 0 screed_iter = screed.open(infile) for index, is_pair, read1, read2 in broken_paired_reader(screed_iter): if index % 100000 == 0 and index > 0: print('...', index, file=sys.stderr) if is_pair: write_record_pair(read1, read2, paired_fp) n_pe += 1 else: write_record(read1, single_fp) n_se += 1 single_fp.close() paired_fp.close() if n_pe == 0: raise Exception("no paired reads!? check file formats...") print('DONE; read %d sequences,' ' %d pairs and %d singletons' % (n_pe * 2 + n_se, n_pe, n_se), file=sys.stderr) print('wrote to: %s and %s' % (out2, out1), file=sys.stderr)
def main(): info('load-into-counting.py', ['counting', 'SeqAn']) args = sanitize_epilog(get_parser()).parse_args() report_on_config(args) base = args.output_countgraph_filename filenames = args.input_sequence_filename for name in args.input_sequence_filename: check_input_files(name, args.force) tablesize = calculate_graphsize(args, 'countgraph') check_space_for_graph(args.output_countgraph_filename, tablesize, args.force) check_file_writable(base) check_file_writable(base + ".info") print('Saving k-mer countgraph to %s' % base, file=sys.stderr) print('Loading kmers from sequences in %s' % repr(filenames), file=sys.stderr) # clobber the '.info' file now, as we always open in append mode below if os.path.exists(base + '.info'): os.remove(base + '.info') print('making countgraph', file=sys.stderr) countgraph = khmer_args.create_countgraph(args) countgraph.set_use_bigcount(args.bigcount) filename = None total_num_reads = 0 for index, filename in enumerate(filenames): rparser = khmer.ReadParser(filename) threads = [] print('consuming input', filename, file=sys.stderr) for _ in range(args.threads): cur_thrd = \ threading.Thread( target=countgraph.consume_fasta_with_reads_parser, args=(rparser, ) ) threads.append(cur_thrd) cur_thrd.start() for thread in threads: thread.join() if index > 0 and index % 10 == 0: tablesize = calculate_graphsize(args, 'countgraph') check_space_for_graph(base, tablesize, args.force) print('mid-save', base, file=sys.stderr) countgraph.save(base) with open(base + '.info', 'a') as info_fh: print('through', filename, file=info_fh) total_num_reads += rparser.num_reads n_kmers = countgraph.n_unique_kmers() print('Total number of unique k-mers:', n_kmers, file=sys.stderr) with open(base + '.info', 'a') as info_fp: print('Total number of unique k-mers:', n_kmers, file=info_fp) print('saving', base, file=sys.stderr) countgraph.save(base) # Change max_false_pos=0.2 only if you really grok it. HINT: You don't fp_rate = \ khmer.calc_expected_collisions( countgraph, args.force, max_false_pos=.2) with open(base + '.info', 'a') as info_fp: print('fp rate estimated to be %1.3f\n' % fp_rate, file=info_fp) if args.summary_info: mr_fmt = args.summary_info.lower() mr_file = base + '.info.' + mr_fmt print("Writing summmary info to", mr_file, file=sys.stderr) with open(mr_file, 'w') as mr_fh: if mr_fmt == 'json': mr_data = { "ht_name": os.path.basename(base), "fpr": fp_rate, "num_kmers": n_kmers, "files": filenames, "mrinfo_version": "0.2.0", "num_reads": total_num_reads, } json.dump(mr_data, mr_fh) mr_fh.write('\n') elif mr_fmt == 'tsv': mr_fh.write("ht_name\tfpr\tnum_kmers\tnum_reads\tfiles\n") vals = [ os.path.basename(base), "{:1.3f}".format(fp_rate), str(n_kmers), str(total_num_reads), ";".join(filenames), ] mr_fh.write("\t".join(vals) + "\n") print('fp rate estimated to be %1.3f' % fp_rate, file=sys.stderr) print('DONE.', file=sys.stderr) print('wrote to:', base + '.info', file=sys.stderr)
def main(): #info('sweep-files.py', ['sweep']) parser = sanitize_epilog(get_parser()) args = parser.parse_args() if args.max_tablesize < MIN_HSIZE: args.max_tablesize = MIN_HSIZE if args.ksize < MIN_KSIZE: args.ksize = MIN_KSIZE report_on_config(args, graphtype='nodegraph') K = args.ksize HT_SIZE = args.max_tablesize N_HT = args.n_tables traversal_range = args.traversal_range outputs = {} # Consume the database files and assign each a unique label in the # de Bruin graph; open a file and output queue for each file as well. ht = khmer.GraphLabels(K, HT_SIZE, N_HT) try: print('consuming and labeling input sequences...', file=sys.stderr) for i, dbfile in enumerate(args.db): name = args.output_prefix + os.path.basename(dbfile) outfp = open(os.path.join(args.outdir, name) + '.sweep', 'wb') outq = IODeque(args.max_queue_size, outfp) outputs[i] = outq for n, record in enumerate(screed.open(dbfile)): if n % 50000 == 0: print('...consumed {n} sequences...'.format(n=n), file=sys.stderr) ht.consume_sequence_and_tag_with_labels(record.sequence, i) except (IOError, OSError) as e: print('!! ERROR: !!', e, file=sys.stderr) print('...error setting up outputs. exiting...', file=sys.stderr) print('done consuming input sequence. \ added {t} tags and {l} labels...' \ .format(t=ht.n_tags(), l=ht.n_labels()), file=sys.stderr) n_orphaned = 0 n_labeled = 0 n_mlabeled = 0 # Iterate through all the reads and check for the labels with which they # intersect. Queue to the corresponding label when found. for read_file in args.query: print('** sweeping {read_file} for labels...'.format( read_file=read_file), file=sys.stderr) try: read_fp = screed.open(read_file) except IOError as error: print('!! ERROR: !!', error, file=sys.stderr) print('*** Could not open {fn}, skipping...'.format( fn=read_file), file=sys.stderr) else: for n, record in enumerate(read_fp): if n % 50000 == 0 and n > 0: print('\tswept {n} reads [{nc} labeled, {no} orphaned]' \ .format(n=n, nc=n_labeled, no=n_orphaned), file=sys.stderr) seq = record.sequence try: labels = ht.sweep_label_neighborhood(seq, traversal_range) except ValueError as e: # sweep_label_neighborhood throws a ValueError when # len(seq) < K. just catch it and move on. pass else: if labels: n_labeled += 1 if len(labels) > 1: n_mlabeled += 1 for label in labels: outputs[label].append(record) else: n_orphaned += 1 print('** End of file {fn}...'.format(fn=read_file), file=sys.stderr) read_fp.close() # gotta output anything left in the buffers at the end! print('** End of run...', file=sys.stderr) for q in list(outputs.values()): q.clear() print('swept {n_reads}...'.format( n_reads=n_labeled + n_orphaned), file=sys.stderr) print('...with {nc} labeled and {no} orphaned'.format( nc=n_labeled, no=n_orphaned), file=sys.stderr) print('...and {nmc} multilabeled'.format(nmc=n_mlabeled), file=sys.stderr)
def main(): info('split-paired-reads.py') args = sanitize_epilog(get_parser()).parse_args() infile = args.infile filenames = [infile] check_input_files(infile, args.force) check_space(filenames, args.force) basename = os.path.basename(infile) # decide where to put output files - specific directory? or just default? if infile in ('/dev/stdin', '-'): if not (args.output_first and args.output_second): print("Accepting input from stdin; " "output filenames must be provided.", file=sys.stderr) sys.exit(1) elif args.output_directory: if not os.path.exists(args.output_directory): os.makedirs(args.output_directory) out1 = os.path.join(args.output_directory, basename + '.1') out2 = os.path.join(args.output_directory, basename + '.2') else: out1 = basename + '.1' out2 = basename + '.2' # OVERRIDE output file locations with -1, -2 if args.output_first: fp_out1 = get_file_writer(args.output_first, args.gzip, args.bzip) out1 = fp_out1.name else: # Use default filename created above fp_out1 = get_file_writer(open(out1, 'wb'), args.gzip, args.bzip) if args.output_second: fp_out2 = get_file_writer(args.output_second, args.gzip, args.bzip) out2 = fp_out2.name else: # Use default filename created above fp_out2 = get_file_writer(open(out2, 'wb'), args.gzip, args.bzip) # put orphaned reads here, if -0! if args.output_orphaned: fp_out0 = get_file_writer(args.output_orphaned, args.gzip, args.bzip) out0 = describe_file_handle(args.output_orphaned) counter1 = 0 counter2 = 0 counter3 = 0 index = None screed_iter = screed.open(infile) # walk through all the reads in broken-paired mode. paired_iter = broken_paired_reader(screed_iter, require_paired=not args.output_orphaned) try: for index, is_pair, record1, record2 in paired_iter: if index % 10000 == 0: print('...', index, file=sys.stderr) if is_pair: write_record(record1, fp_out1) counter1 += 1 write_record(record2, fp_out2) counter2 += 1 elif args.output_orphaned: write_record(record1, fp_out0) counter3 += 1 except UnpairedReadsError as e: print("Unpaired reads found starting at {name}; exiting".format( name=e.r1.name), file=sys.stderr) sys.exit(1) print("DONE; split %d sequences (%d left, %d right, %d orphans)" % (counter1 + counter2, counter1, counter2, counter3), file=sys.stderr) print("/1 reads in %s" % out1, file=sys.stderr) print("/2 reads in %s" % out2, file=sys.stderr) if args.output_orphaned: print("orphans in %s" % out0, file=sys.stderr)
def main(): # pylint: disable=too-many-branches,too-many-statements parser = sanitize_epilog(get_parser()) parser = get_parser() args = parser.parse_args() configure_logging(args.quiet) info('normalize-by-median.py', ['diginorm']) report_on_config(args) report_fp = args.report force_single = args.force_single # check for similar filenames # if we're using a single output file only check for identical filenames # otherwise, check for identical BASE names as well. filenames = [] basenames = [] for pathfilename in args.input_filenames: filenames.append(pathfilename) if args.single_output_file: continue # nothing more to worry about basename = os.path.basename(pathfilename) if basename in basenames: log_error('ERROR: Duplicate filename--Cannot handle this!') log_error('** Exiting!') sys.exit(1) basenames.append(basename) # check that files exist and there is sufficient output disk space. check_valid_file_exists(args.input_filenames) check_space(args.input_filenames, args.force) if args.savegraph: graphsize = calculate_graphsize(args, 'countgraph') check_space_for_graph(args.savegraph, graphsize, args.force) # load or create counting table. if args.loadgraph: log_info('loading k-mer countgraph from {graph}', graph=args.loadgraph) countgraph = khmer.load_countgraph(args.loadgraph) else: log_info('making countgraph') countgraph = khmer_args.create_countgraph(args) # create an object to handle diginorm of all files norm = Normalizer(args.cutoff, countgraph) with_diagnostics = WithDiagnostics(norm, report_fp, args.report_frequency) # make a list of all filenames and if they're paired or not; # if we don't know if they're paired, default to allowing but not # forcing pairing. files = [] for element in filenames: files.append([element, args.paired]) if args.unpaired_reads: files.append([args.unpaired_reads, False]) corrupt_files = [] outfp = None output_name = None if args.single_output_file: outfp = get_file_writer(args.single_output_file, args.gzip, args.bzip) else: if '-' in filenames or '/dev/stdin' in filenames: print("Accepting input from stdin; output filename must " "be provided with '-o'.", file=sys.stderr) sys.exit(1) # # main loop: iterate over all files given, do diginorm. # for filename, require_paired in files: if not args.single_output_file: output_name = os.path.basename(filename) + '.keep' outfp = open(output_name, 'wb') outfp = get_file_writer(outfp, args.gzip, args.bzip) # failsafe context manager in case an input file breaks with catch_io_errors(filename, outfp, args.single_output_file, args.force, corrupt_files): screed_iter = screed.open(filename) reader = broken_paired_reader(screed_iter, min_length=args.ksize, force_single=force_single, require_paired=require_paired) # actually do diginorm for record in with_diagnostics(reader, filename): if record is not None: write_record(record, outfp) log_info('output in {name}', name=describe_file_handle(outfp)) if not is_block(outfp): outfp.close() # finished - print out some diagnostics. log_info('Total number of unique k-mers: {umers}', umers=countgraph.n_unique_kmers()) if args.savegraph: log_info('...saving to {name}', name=args.savegraph) countgraph.save(args.savegraph) fp_rate = \ khmer.calc_expected_collisions(countgraph, False, max_false_pos=.8) # for max_false_pos see Zhang et al., http://arxiv.org/abs/1309.2975 log_info('fp rate estimated to be {fpr:1.3f}', fpr=fp_rate) if args.force and len(corrupt_files) > 0: log_error("** WARNING: Finished with errors!") log_error("** I/O Errors occurred in the following files:") log_error("\t" + " ".join(corrupt_files))
def main(): # pylint: disable=too-many-locals,too-many-branches info('abundance-dist-single.py', ['counting', 'SeqAn']) args = sanitize_epilog(get_parser()).parse_args() report_on_config(args) check_input_files(args.input_sequence_filename, args.force) if args.savegraph: graphsize = calculate_graphsize(args, 'countgraph') check_space_for_graph(args.savegraph, graphsize, args.force) if (not args.squash_output and os.path.exists(args.output_histogram_filename)): print('ERROR: %s exists; not squashing.' % args.output_histogram_filename, file=sys.stderr) sys.exit(1) else: hist_fp = open(args.output_histogram_filename, 'w') hist_fp_csv = csv.writer(hist_fp) # write headers: hist_fp_csv.writerow(['abundance', 'count', 'cumulative', 'cumulative_fraction']) print('making countgraph', file=sys.stderr) countgraph = khmer_args.create_countgraph(args, multiplier=1.1) countgraph.set_use_bigcount(args.bigcount) print('building k-mer tracking graph', file=sys.stderr) tracking = khmer_args.create_nodegraph(args, multiplier=1.1) print('kmer_size:', countgraph.ksize(), file=sys.stderr) print('k-mer countgraph sizes:', countgraph.hashsizes(), file=sys.stderr) print('outputting to', args.output_histogram_filename, file=sys.stderr) # start loading rparser = khmer.ReadParser(args.input_sequence_filename) threads = [] print('consuming input, round 1 --', args.input_sequence_filename, file=sys.stderr) for _ in range(args.threads): thread = \ threading.Thread( target=countgraph.consume_fasta_with_reads_parser, args=(rparser, ) ) threads.append(thread) thread.start() for thread in threads: thread.join() print('Total number of unique k-mers: {0}'.format( countgraph.n_unique_kmers()), file=sys.stderr) abundance_lists = [] def __do_abundance_dist__(read_parser): abundances = countgraph.abundance_distribution_with_reads_parser( read_parser, tracking) abundance_lists.append(abundances) print('preparing hist from %s...' % args.input_sequence_filename, file=sys.stderr) rparser = khmer.ReadParser(args.input_sequence_filename) threads = [] print('consuming input, round 2 --', args.input_sequence_filename, file=sys.stderr) for _ in range(args.threads): thread = \ threading.Thread( target=__do_abundance_dist__, args=(rparser, ) ) threads.append(thread) thread.start() for thread in threads: thread.join() assert len(abundance_lists) == args.threads, len(abundance_lists) abundance = {} for abundance_list in abundance_lists: for i, count in enumerate(abundance_list): abundance[i] = abundance.get(i, 0) + count total = sum(abundance.values()) if 0 == total: print("ERROR: abundance distribution is uniformly zero; " "nothing to report.", file=sys.stderr) print( "\tPlease verify that the input files are valid.", file=sys.stderr) sys.exit(1) sofar = 0 for _, i in sorted(abundance.items()): if i == 0 and not args.output_zero: continue sofar += i frac = sofar / float(total) hist_fp_csv.writerow([_, i, sofar, round(frac, 3)]) if sofar == total: break if args.savegraph: print('Saving k-mer countgraph ', args.savegraph, file=sys.stderr) print('...saving to', args.savegraph, file=sys.stderr) countgraph.save(args.savegraph) print('wrote to: ' + args.output_histogram_filename, file=sys.stderr)
def main(): info("sweep-reads-buffered.py", ["sweep"]) parser = sanitize_epilog(get_parser()) args = parser.parse_args() if args.max_tablesize < MAX_HSIZE: args.max_tablesize = MAX_HSIZE if args.ksize < MIN_KSIZE: args.ksize = MIN_KSIZE report_on_config(args, graphtype="nodegraph") K = args.ksize HT_SIZE = args.max_tablesize N_HT = args.n_tables traversal_range = args.traversal_range input_fastp = args.input_fastp if not args.outdir: outdir = os.path.dirname(input_fastp) else: outdir = args.outdir max_buffers = args.max_buffers output_pref = args.output_prefix buf_size = args.buffer_size max_reads = args.max_reads check_input_files(args.input_fastp, args.force) check_valid_file_exists(args.input_files) all_input_files = [input_fastp] all_input_files.extend(args.input_files) # Check disk space availability check_space(all_input_files, args.force) # figure out input file type (FA/FQ) -- based on first file ix = iter(screed.open(args.input_files[0])) record = next(ix) del ix extension = "fa" if hasattr(record, "quality"): # fastq! extension = "fq" output_buffer = ReadBufferManager(max_buffers, max_reads, buf_size, output_pref, outdir, extension) # consume the partitioned fasta with which to label the graph ht = khmer.GraphLabels(K, HT_SIZE, N_HT) try: print("consuming input sequences...", file=sys.stderr) if args.label_by_pid: print("...labeling by partition id (pid)", file=sys.stderr) ht.consume_partitioned_fasta_and_tag_with_labels(input_fastp) elif args.label_by_seq: print("...labeling by sequence", file=sys.stderr) for n, record in enumerate(screed.open(input_fastp)): if n % 50000 == 0: print("...consumed {n} sequences...".format(n=n), file=sys.stderr) ht.consume_sequence_and_tag_with_labels(record.sequence, n) else: print("...labeling to create groups of size {s}".format(s=args.group_size), file=sys.stderr) label = -1 g = 0 try: outfp = open("{pref}_base_{g}.{ext}".format(pref=output_pref, g=g, ext=extension), "wb") for n, record in enumerate(screed.open(input_fastp)): if n % args.group_size == 0: label += 1 if label > g: g = label outfp = open("{pref}_base_{g}.{ext}".format(pref=output_pref, g=g, ext=extension), "wb") if n % 50000 == 0: print("...consumed {n} sequences...".format(n=n), file=sys.stderr) ht.consume_sequence_and_tag_with_labels(record.sequence, label) write_record(record, outfp) except (IOError, OSError) as e: print("!! ERROR !!", e, file=sys.stderr) print("...error splitting input. exiting...", file=sys.stderr) except (IOError, OSError) as e: print("!! ERROR: !!", e, file=sys.stderr) print( "...error consuming \ {i}. exiting...".format( i=input_fastp ), file=sys.stderr, ) print( "done consuming input sequence. \ added {t} tags and {l} \ labels...".format( t=ht.graph.n_tags(), l=ht.n_labels() ) ) label_dict = defaultdict(int) label_number_dist = [] n_orphaned = 0 n_labeled = 0 n_mlabeled = 0 total_t = time.clock() start_t = time.clock() for read_file in args.input_files: print("** sweeping {read_file} for labels...".format(read_file=read_file), file=sys.stderr) file_t = 0.0 try: read_fp = screed.open(read_file) except (IOError, OSError) as error: print("!! ERROR: !!", error, file=sys.stderr) print("*** Could not open {fn}, skipping...".format(fn=read_file), file=sys.stderr) else: for _, record in enumerate(read_fp): if _ % 50000 == 0: end_t = time.clock() batch_t = end_t - start_t file_t += batch_t print( "\tswept {n} reads [{nc} labeled, \ {no} orphaned] \ ** {sec}s ({sect}s total)".format( n=_, nc=n_labeled, no=n_orphaned, sec=batch_t, sect=file_t ), file=sys.stderr, ) start_t = time.clock() seq = record.sequence name = record.name try: labels = ht.sweep_label_neighborhood(seq, traversal_range) except ValueError as e: pass else: if hasattr(record, "quality"): seq_str = fmt_fastq(name, seq, record.quality, labels) else: seq_str = fmt_fasta(name, seq, labels) label_number_dist.append(len(labels)) if labels: n_labeled += 1 if len(labels) > 1: output_buffer.queue(seq_str, "multi") n_mlabeled += 1 label_dict["multi"] += 1 else: output_buffer.queue(seq_str, labels[0]) label_dict[labels[0]] += 1 else: n_orphaned += 1 output_buffer.queue(seq_str, "orphaned") label_dict["orphaned"] += 1 print("** End of file {fn}...".format(fn=read_file), file=sys.stderr) output_buffer.flush_all() read_fp.close() # gotta output anything left in the buffers at the end! print("** End of run...", file=sys.stderr) output_buffer.flush_all() total_t = time.clock() - total_t if output_buffer.num_write_errors > 0 or output_buffer.num_file_errors > 0: print("! WARNING: Sweep finished with errors !", file=sys.stderr) print("** {writee} reads not written".format(writee=output_buffer.num_write_errors), file=sys.stderr) print("** {filee} errors opening files".format(filee=output_buffer.num_file_errors), file=sys.stderr) print("swept {n_reads} for labels...".format(n_reads=n_labeled + n_orphaned), file=sys.stderr) print("...with {nc} labeled and {no} orphaned".format(nc=n_labeled, no=n_orphaned), file=sys.stderr) print("...and {nmc} multilabeled".format(nmc=n_mlabeled), file=sys.stderr) print("** outputting label number distribution...", file=sys.stderr) fn = os.path.join(outdir, "{pref}.dist.txt".format(pref=output_pref)) with open(fn, "w", encoding="utf-8") as outfp: for nc in label_number_dist: outfp.write("{nc}\n".format(nc=nc)) fn = os.path.join(outdir, "{pref}.counts.csv".format(pref=output_pref)) print("** outputting label read counts...", file=sys.stderr) with open(fn, "w", encoding="utf-8") as outfp: for k in label_dict: outfp.write("{l},{c}\n".format(l=k, c=label_dict[k]))
def main(): info('collect-reads.py', ['counting']) args = sanitize_epilog(get_parser()).parse_args() report_on_config(args) base = args.output_countgraph_filename filenames = args.input_sequence_filename for name in args.input_sequence_filename: check_input_files(name, False) check_space(args.input_sequence_filename, False) tablesize = calculate_graphsize(args, 'countgraph') check_space_for_graph(args.output_countgraph_filename, tablesize, False) print('Saving k-mer countgraph to %s' % base) print('Loading sequences from %s' % repr(filenames)) if args.output: print('Outputting sequences to', args.output) print('making countgraph', file=sys.stderr) htable = khmer_args.create_countgraph(args) htable.set_use_bigcount(args.bigcount) total_coverage = 0. n = 0 for index, filename in enumerate(filenames): for record in screed.open(filename): seq = record.sequence.upper() if 'N' in seq: seq = seq.replace('N', 'A') try: med, _, _ = htable.get_median_count(seq) except ValueError: continue total_coverage += med n += 1 if total_coverage / float(n) > args.coverage: print('reached target average coverage:', \ total_coverage / float(n)) break htable.consume(seq) if args.output: args.output.write(output_single(record)) if n % 100000 == 0: print('...', index, filename, n, total_coverage / float(n)) if total_coverage / float(n) > args.coverage: break print('Collected %d reads' % (n,)) if args.report_total_kmers: print('Total number of k-mers: {0}'.format( htable.n_occupied()), file=sys.stderr) print('saving', base) htable.save(base) info_fp = open(base + '.info', 'w') info_fp.write('through end: %s\n' % filenames[-1]) # Change 0.2 only if you really grok it. HINT: You don't. fp_rate = khmer.calc_expected_collisions(htable, False, max_false_pos=.2) print('fp rate estimated to be %1.3f' % fp_rate) print('fp rate estimated to be %1.3f' % fp_rate, file=info_fp) print('DONE.')