Example #1
0
def test_kinorrt_cases(stability_solver, max_samples=100):

    viewer = Viewer()
    _itbl.loadOpenGL()

    keyword = 'wall'
    neighbor_r = 10
    #object_shape = [0.5, 0.5, 0.2, 0.2]
    # x_init = (4.5, 0.5, 0)
    # x_goal = (-3, 7.5, np.pi)
    object_shape = [0.5, 0.2, 0.2, 0.2]
    x_init = (4.5, 0.2, 0)
    x_goal = (-3, 7.2, 0)
    X_dimensions = np.array([(-8, 8), (0, 7 + object_shape[1] * 4),
                             (-np.pi, np.pi)])
    world_key = 'vert'
    dist_weight = [1, 0.5, 0.1]
    dist_cost = 0.2
    manipulator = point_manipulator()
    step_length = 10
    mnp_fn_max = 100
    goal_kch = [1, 1, 0]

    app = iTM2d(object_shape, example=keyword)
    viewer.set_renderer(app)
    viewer.init()

    X = SearchSpace(X_dimensions)

    the_object = part(app.target, object_shape)

    rrt_tree = RRTManipulationStability(X, x_init, x_goal,
                                        environment(app.collision_manager),
                                        the_object, manipulator, max_samples,
                                        neighbor_r, world_key)
    rrt_tree.mnp_fn_max = mnp_fn_max
    rrt_tree.dist_weight = dist_weight
    rrt_tree.cost_weight[0] = dist_cost
    rrt_tree.step_length = step_length
    rrt_tree.goal_kch = goal_kch

    rrt_tree.initialize_stability_margin_solver(stability_solver)

    t_start = time.time()
    paths = rrt_tree.search()
    stability_solver.save_hvfc_params_path(paths)
    t_end = time.time()
    print('time:', t_end - t_start)

    app.get_path((paths[0], paths[2]))
    app.get_nodes(rrt_tree.trees[0].nodes)
    app.get_tree(rrt_tree)
    viewer.start()

    return t_end - t_start
def test_kinorrt_cases(keyword, max_samples,max_time):
    viewer = Viewer()
    _itbl.loadOpenGL()
    manipulator = point_manipulator()
    mnp_fn_max = None
    step_length = 2
    neighbor_r = 5
    dist_cost = 1

    if keyword == 'sofa':
        neighbor_r = 5
        object_shape = [1.75, 1, 1.5, 0.75]
        X_dimensions = np.array([(0, 14.5), (0, 14.5), (-np.pi, np.pi)])  # dimensions of Search Space
        x_init = (0, OBJECT_SHAPE[0] / 2, np.pi / 2)  # starting location
        x_goal = (OBJECT_SHAPE[0] * 5 + BLOCK_W, HALLWAY_W + BLOCK_H * 2 - OBJECT_SHAPE[1] - 1, np.pi / 2)
        world_key = 'planar'
        dist_weight = 50
        dist_cost = 0.5
        manipulator = doublepoint_manipulator()
    elif keyword == 'corner':
        neighbor_r = 5
        object_shape = [0.5, 0.5, 0.2, 0.2]
        X_dimensions = np.array([(0, 4), (0, 4), (-np.pi, np.pi)])
        x_init = (3, 0.5, 0)  # starting location
        x_goal = (0.707, 0.707, -np.pi / 4)
        # x_init = (2, 0.5, 0)
        # x_goal = (-3, 0.5, -np.pi / 2)
        world_key = 'vert'
        dist_weight = 1
        manipulator = doublepoint_manipulator()
        mnp_fn_max = 6
        step_length = 2
        goal_kch = [1, 1, 1]
    elif keyword == 'wall':
        neighbor_r = 10
        object_shape = [0.5,0.5,0.2,0.2]
        X_dimensions = np.array([(-8, 8), (0, 7 + object_shape[1]*4), (-np.pi, np.pi)])
        x_init = (4.5, 0.5, 0)
        x_goal = (-3, 7.5, 0)
        world_key = 'vert'
        dist_weight = 1
        dist_cost = 0.2
        manipulator = point_manipulator()
        step_length = 10
        mnp_fn_max = 50
        goal_kch = [1,1,0]
    elif keyword == 'table':

        object_shape = [1, 1, 0.2, 0.2]
        X_dimensions = np.array([(0, 4), (0, 4), (-2*np.pi, 2*np.pi)])
        # x_init = (3, 0.5, 0)  # starting location
        # x_goal = (0.707, 0.707, np.pi / 4)
        x_init = (2, 1, 0)
        x_goal = (2, 1, -np.pi/2)
        world_key = 'vert'
        dist_weight = 1
        manipulator = doublepoint_manipulator()
        mnp_fn_max = 6
        step_length = 3.14
        goal_kch = [0.1, 0.1, 10]

    elif keyword == 'obstacle_course':
        object_shape = [0.5, 0.5, 0.2, 0.2]
        X_dimensions = np.array([(-2.5,3), (0, 4), (-2*np.pi, 2*np.pi)])
        x_init = (-2.5, 1.5, 0)
        x_goal = (2.5, 1.5, 0)
        world_key = 'vert'
        dist_weight = 0.08
        dist_cost = 1
        manipulator = doublepoint_manipulator()
        mnp_fn_max = 6.15
        goal_kch = [0.7,0.2,0]
    elif keyword == 'peg-in-hole-v':
        object_shape = [0.45, 1, 0.2, 0.2]
        X_dimensions = np.array([(-2, 1), (-2, 3), (-np.pi, np.pi)])
        x_init = (-2,1,0)
        x_goal = (0,-1,0)
        world_key = 'vert'
        dist_weight = 1
        manipulator = doublepoint_manipulator()
        mnp_fn_max = 50
        goal_kch = [0.5, 0.2, 0.8]
        init_mnp = [Contact((-0.45, 0.8), (1, 0), 0), Contact((0.45, 0.8), (-1, 0), 0)]

    elif keyword == 'peg-in-hole-p':
        object_shape = [0.45, 1, 0.2, 0.2]
        X_dimensions = np.array([(-2, 3), (0,2.5), (-np.pi, np.pi)])
        x_init = (3,2.5,0)
        x_goal = (-1,0.5,np.pi/2)
        world_key = 'planar'
        dist_weight = 1
        manipulator = doublepoint_manipulator()
        mnp_fn_max = 50
        goal_kch = [1, 1, 1]


    elif keyword == 'unpacking':
        object_shape = [0.39, 1, 0.2, 0.2]
        X_dimensions = np.array([(-2, 2), (-0.5, 2.5), (-np.pi, np.pi)])
        x_init = (-0.5,0,0)
        x_goal = (1,1.39,-np.pi/2)
        world_key = 'vert'
        dist_weight = 1
        manipulator = doublepoint_manipulator()
        mnp_fn_max = 100
        goal_kch = [1, 1, 1]

    elif keyword == 'book':
        object_shape = [1, 0.2, 0.2, 0.2]
        X_dimensions = np.array([(-4.5, 4.5), (2, 3.5), (-2*np.pi, 2*np.pi)])
        x_init = (0,2.2,0)
        x_goal = (-2,3,-np.pi/2)
        world_key = 'vert'
        dist_weight = 1
        manipulator = doublepoint_manipulator()
        mnp_fn_max = 15
        goal_kch = [0.01, 0.1, 1]
        allow_contact_edges = [True, False, True, False]

    elif keyword == 'pushing':
        object_shape = [0.5, 1, 0.2, 0.2]
        X_dimensions = np.array([(-3.1, 3.1), (-2.6,4), (-np.pi, np.pi)])
        x_init = (-2,-1.25,0)
        x_goal = (2.1,2.75,0)
        world_key = 'planar'
        dist_weight = 1
        manipulator = point_manipulator()
        mnp_fn_max = 50
        goal_kch = [1, 1, 1]

    else:
        print('Wrong case keyword!')
        raise


    app = iTM2d(object_shape, example=keyword)
    viewer.set_renderer(app)
    viewer.init()

    X = SearchSpace(X_dimensions)

    if keyword == 'book':
        the_object = part(app.target, object_shape, allow_contact_edges)
    else:
        the_object = part(app.target, object_shape)

    rrt_tree = RRT1(X, x_init, x_goal, environment(app.collision_manager), the_object, manipulator,
                                max_samples, neighbor_r, world_key)
    rrt_tree.mnp_fn_max = mnp_fn_max
    rrt_tree.dist_weight = dist_weight
    rrt_tree.cost_weight[0] = dist_cost
    rrt_tree.step_length = step_length
    rrt_tree.goal_kch = goal_kch
    rrt_tree.max_time = max_time

    t_start = time.time()
    if keyword == 'peg-in-hole-v':
        paths, ifsuccess, n_samples = rrt_tree.search(init_mnp)
    else:
        paths, ifsuccess, n_samples = rrt_tree.search()
    t_end = time.time()
    print('time:', t_end - t_start)

    app.get_path(paths)
    app.get_nodes(rrt_tree.trees[0].nodes)
    app.get_tree(rrt_tree)
    viewer.start()

    return t_end - t_start, len(paths[2]), n_samples, ifsuccess
                         (0, 100)])  # dimensions of Search Space
# obstacles
Obstacles = np.array([(20, 20, 20, 40, 40, 40), (20, 20, 60, 40, 40, 80),
                      (20, 60, 20, 40, 80, 40), (60, 60, 20, 80, 80, 40),
                      (60, 20, 20, 80, 40, 40), (60, 20, 60, 80, 40, 80),
                      (20, 60, 60, 40, 80, 80), (60, 60, 60, 80, 80, 80)])
x_init = (0, 0, 0)  # starting location
x_goal = (100, 100, 100)  # goal location

Q = np.array([(8, 4)])  # length of tree edges
r = 1  # length of smallest edge to check for intersection with obstacles
max_samples = 1024  # max number of samples to take before timing out
prc = 0.1  # probability of checking for a connection to goal

# create Search Space
X = SearchSpace(X_dimensions, Obstacles)

# create rrt_search
rrt = RRT(X, Q, x_init, x_goal, max_samples, r, prc)
path = rrt.rrt_search()

# plot
plot = Plot("rrt_3d")
plot.plot_tree(X, rrt.trees)
if path is not None:
    plot.plot_path(X, path)
plot.plot_obstacles(X, Obstacles)
plot.plot_start(X, x_init)
plot.plot_goal(X, x_goal)
plot.draw(auto_open=True)
def test_kinorrt_cases(stability_solver, max_samples=100):

    viewer = Viewer()
    _itbl.loadOpenGL()

    step_length = 2
    neighbor_r = 5
    dist_cost = 10

    object_shapes = [[1, 0.5], [0.5, 0.5]]
    X_dimensions = np.array([(-1.5, 1.5), (-1.5, 2),
                             (-1.5 * np.pi, 1.5 * np.pi)])
    x_init = (0, 0, 0)
    x_goal = (0, 0, np.pi)
    world_key = 'vert'
    dist_weight = 1
    manipulator = doublepoint_manipulator(
        np.array([[-1.5, -1.5, 0., -1.5], [-0., 1.5, 1.5, 1.5]]))
    mnp_fn_max = 100
    goal_kch = [0.1, 0.1, 1]

    app = iTM2d(object_shapes)
    viewer.set_renderer(app)
    viewer.init()

    X = SearchSpace(X_dimensions)

    the_object = in_hand_part(app.targets, object_shapes)

    app.target_T(the_object.T0, the_object.T1)
    envir = in_hand_environment(app.collision_manager)
    rrt_tree = RRTManipulation(X, x_init, x_goal, envir, the_object,
                               manipulator, max_samples, neighbor_r, world_key)
    rrt_tree.env_mu = 0.8
    rrt_tree.mnp_mu = 0.8
    rrt_tree.mnp_fn_max = mnp_fn_max
    rrt_tree.dist_weight = dist_weight
    rrt_tree.cost_weight[0] = dist_cost
    rrt_tree.step_length = step_length
    rrt_tree.goal_kch = goal_kch

    rrt_tree.initialize_stability_margin_solver(stability_solver)

    t_start = time.time()

    init_mnp = [
        Contact((-0.5, 0.25), (1, 0), 0),
        Contact((0.5, 0.25), (-1, 0), 0)
    ]
    # rrt_tree.x_goal = (0,0,np.pi/2)
    # path, mnp_path = rrt_tree.search(init_mnp)
    rrt_tree.x_goal = (0, 0, np.pi)
    paths = rrt_tree.search(init_mnp)

    t_end = time.time()
    print('time:', t_end - t_start)

    whole_path = []
    envs = []
    mnps = []
    modes = []
    for q in paths[2][2:]:
        ps = rrt_tree.trees[0].edges[q].path
        ps.reverse()
        m = np.array(rrt_tree.trees[0].edges[q].mode)
        current_envs = []
        current_modes = []
        current_path = []
        mnp = rrt_tree.trees[0].edges[q].manip
        for p in ps:
            _, env = rrt_tree.check_collision(p)
            if len(mnp) + len(env) != len(m):
                if len(mnp) + len(env) == sum(m != CONTACT_MODE.LIFT_OFF):
                    m = m[m != CONTACT_MODE.LIFT_OFF]
                else:
                    print('env contact error')
                    continue
            current_modes.append(m)
            current_path.append(p)
            current_envs.append(env)

        current_mnps = [mnp] * len(current_path)
        whole_path += current_path
        envs += current_envs
        modes += current_modes
        mnps += current_mnps

    print(whole_path, envs, modes, mnps)
    # app.get_path(paths[0],mnps)
    results = traj_optim_static((whole_path, envs, modes, mnps), rrt_tree)

    app.get_path(np.array(results).reshape(-1, 3), mnps)
    app.get_nodes(rrt_tree.trees[0].nodes)
    app.get_tree(rrt_tree)
    viewer.start()

    return
Example #5
0
def test_kinorrt_cases(stability_solver, max_samples=100):

    viewer = Viewer()
    _itbl.loadOpenGL()

    step_length = 2
    neighbor_r = 5
    dist_cost = 10

    object_shapes = [[1, 0.5], [0.5, 0.5]]
    X_dimensions = np.array([(-1.5, 1.5), (-1.5, 2),
                             (-1.5 * np.pi, 1.5 * np.pi)])
    x_init = (0, 0, 0)
    x_goal = (0, 0, np.pi)
    world_key = 'vert'
    dist_weight = 1
    manipulator = doublepoint_manipulator(
        np.array([[-1.5, -1.5, 0., -1.5], [-0., 1.5, 1.5, 1.5]]))
    mnp_fn_max = 100
    goal_kch = [0.1, 0.1, 1]

    app = iTM2d(object_shapes)
    viewer.set_renderer(app)
    viewer.init()

    X = SearchSpace(X_dimensions)

    the_object = in_hand_part(app.targets, object_shapes)

    app.target_T(the_object.T0, the_object.T1)
    envir = in_hand_environment(app.collision_manager)
    rrt_tree = RRTManipulation(X, x_init, x_goal, envir, the_object,
                               manipulator, max_samples, neighbor_r, world_key)
    rrt_tree.env_mu = 0.8
    rrt_tree.mnp_mu = 0.8
    rrt_tree.mnp_fn_max = mnp_fn_max
    rrt_tree.dist_weight = dist_weight
    rrt_tree.cost_weight[0] = dist_cost
    rrt_tree.step_length = step_length
    rrt_tree.goal_kch = goal_kch

    rrt_tree.initialize_stability_margin_solver(stability_solver)

    t_start = time.time()

    init_mnp = [
        Contact((-0.5, 0.25), (1, 0), 0),
        Contact((0.5, 0.25), (-1, 0), 0)
    ]
    # rrt_tree.x_goal = (0,0,np.pi/2)
    # path, mnp_path = rrt_tree.search(init_mnp)
    rrt_tree.x_goal = (0, 0, np.pi)
    path, mnp_path = rrt_tree.search(init_mnp)

    t_end = time.time()
    print('time:', t_end - t_start)

    app.get_path(path, mnp_path)
    app.get_nodes(rrt_tree.trees[0].nodes)
    app.get_tree(rrt_tree)
    viewer.start()

    return
elif keyword == 'pushing':
    object_shape = [0.5, 1, 0.2, 0.2]
    X_dimensions = np.array([(-3.1, 3.1), (-2.6,4), (-np.pi, np.pi)])
    x_init = (-2,-1.25,0)
    x_goal = (2.1,2.75,0)
    world_key = 'planar'
    dist_weight = 1
    manipulator = point_manipulator()
    mnp_fn_max = 50
    goal_kch = [1, 1, 1]

app = iTM2d(object_shape, example=keyword)
viewer.set_renderer(app)
viewer.init()

X = SearchSpace(X_dimensions)

if keyword == 'book':
    the_object = part(app.target, object_shape, allow_contact_edges)
else:
    the_object = part(app.target, object_shape)

rrt_tree = RRTManipulation(X, x_init, x_goal, environment(app.collision_manager), the_object, manipulator,
                            max_samples, neighbor_r, world_key)
rrt_tree.mnp_fn_max = mnp_fn_max
rrt_tree.dist_weight = dist_weight
rrt_tree.cost_weight[0] = dist_cost
rrt_tree.step_length = step_length
rrt_tree.goal_kch = goal_kch

rrt_tree.initialize_stability_margin_solver(stability_solver)