Example #1
0
def dotest(name, numTrials, **args):
    logFile = 'output/robotplanopt_' + name + '.csv'
    print("*** Dumping log to %s ***" % (logFile, ))
    flog = open(logFile, 'w')

    try:
        for trial in xrange(numTrials):
            robot.setConfig(configs[0])
            res = planopt.planOptimizedTrajectory(
                world,
                robot,
                configs[1],
                kinematicsCache=kinematicscache,
                logFile=flog,
                **args)
            if res is not None:
                loader.save(
                    res, 'auto',
                    'output/robotplanopt_' + name + "_" + str(trial) + ".path")
    except Exception as e:
        import traceback
        traceback.print_exc()
        print("Exception encountered during dotest", name, ":", e)
        res = None

    print("*** Log dumped to %s ***" % (logFile, ))
    flog.close()
    return res
Example #2
0
def save(obj, fn):
    if hasattr(obj, 'saveFile'):
        return obj.saveFile(fn)
    if hasattr(obj, 'save'):
        return obj.save(fn)
    type = loader.filenameToType(fn)
    return loader.save(obj, type, fn)
Example #3
0
def calculation():
    """
    this is the main function of calibration calculation color.
    """
    joint_positions = []
    data_file = open(calidata_path + 'calibration_joint_positions.txt', 'r')
    for line in data_file:
        line = line.rstrip()
        l = [num for num in line.split(' ')]
        l2 = [float(num) for num in l]
        joint_positions.append(l2)
    data_file.close()

    #the marker transforms here are actually just points not transformations
    marker_transforms = []
    data_file = open(calidata_path + 'calibration_marker_transforms.txt', 'r')
    for line in data_file:
        line = line.rstrip()
        l = [num for num in line.split(' ')]
        l2 = [float(num) for num in l]
        marker_transforms.append(l2)
    data_file.close()

    T_marker_assumed = loader.load(
        'RigidTransform', calidata_path + 'assumed_marker_world_transform.txt')
    T_marker_assumed = (so3.inv(T_marker_assumed[0]), T_marker_assumed[1])

    world = WorldModel()
    res = world.readFile("robot_model_data/ur5Blocks.xml")
    if not res:
        raise RuntimeError("unable to load model")
    #vis.add("world",world)
    robot = world.robot(0)
    link = robot.link(7)
    q0 = robot.getConfig()
    Tcameras = []
    Tlinks = []
    for i in range(len(joint_positions)):
        q = robot.getConfig()
        q[1:7] = joint_positions[i][0:6]
        robot.setConfig(q)
        Tlinks.append(link.getTransform())
        #vis.add("ghost"+str(i),q)
        #vis.setColor("ghost"+str(i),0,1,0,0.5)
    robot.setConfig(q0)
    #vis.add("MARKER",se3.mul(link.getTransform(),T_marker_assumed))
    #vis.setAttribute("MARKER","width",2)

    for loop in range(NLOOPS if ESTIMATE_MARKER_TRANSFORM else 1):
        ###Calculate Tcamera in EE (only needed for transform fit..)
        ###Tcameras = [se3.mul(se3.inv(Tl),se3.mul(T_marker_assumed,se3.inv(Tm_c))) for (Tl,Tm_c) in zip(Tlinks,marker_transforms)]

        #actually using only point fit here....
        if METHOD == 'point fit':
            Tcamera2 = point_fit_transform(
                [Tm_c for Tm_c in marker_transforms],
                [se3.mul(se3.inv(Tl), T_marker_assumed)[1] for Tl in Tlinks])
            Tcamera2 = [so3.from_matrix(Tcamera2[0]), Tcamera2[1]]
            Tcamera = Tcamera2
        #else:
        #    Tcamera = transform_average(Tcameras)
        #with the Tcamera from the current iteration, calculate marker points in world
        Tmarkers_world = [
            se3.apply(se3.mul(Tl, Tcamera), Tm_c)
            for (Tl, Tm_c) in zip(Tlinks, marker_transforms)
        ]
        #Tmarkers_link = [se3.mul(se3.inv(Tl),Tm) for Tl,Tm in zip(Tlinks,Tmarkers)]
        if ESTIMATE_MARKER_TRANSFORM:
            T_marker_assumed_inv = point_fit_transform(
                [[0, 0, 0] for Tm_c in marker_transforms], [
                    se3.apply(se3.mul(Tl, Tcamera2), Tm_c)
                    for (Tl, Tm_c) in zip(Tlinks, marker_transforms)
                ])
            T_marker_assumed_inv = [
                so3.from_matrix(T_marker_assumed_inv[0]),
                T_marker_assumed_inv[1]
            ]
            #print T_marker_assumed_inv
            T_marker_assumed = T_marker_assumed_inv
            #print "New assumed marker position",T_marker_assumed
        else:
            pass
            #print "Would want new marker transform",transform_average(Tmarkers_world)
        #print "New estimated camera position",Tcamera
        SSE_t = 0
        for (Tm_c, Tl) in zip(marker_transforms, Tlinks):
            Tm_c_est = se3.mul(se3.mul(se3.inv(Tcamera), se3.inv(Tl)),
                               T_marker_assumed)
            SSE_t += vectorops.distanceSquared(Tm_c, Tm_c_est[1])
        #print "RMSE rotation (radians)",np.sqrt(SSE_R/len(Tlinks))
        print "RMSE translations (meters)", np.sqrt(SSE_t / len(Tlinks))

    #Tcameras = [se3.mul(se3.inv(Tl),se3.mul(T_marker_assumed,se3.inv(Tm_c))) for (Tl,Tm_c) in zip(Tlinks,marker_transforms)]
    #Tmarkers = [se3.mul(Tl,se3.mul(Tcamera,Tm_c)) for (Tl,Tm_c) in zip(Tlinks,marker_transforms)]

    print "Saving to calibrated_camera_xform.txt"
    cali_txt_path = calidata_path + "calibrated_camera_xform.txt"
    loader.save(Tcamera, "RigidTransform", cali_txt_path)

    if ESTIMATE_MARKER_TRANSFORM:
        print "Saving to calibrated_marker_link_xform.txt"
        loader.save(T_marker_assumed, "RigidTransform",
                    calidata_path + "calibrated_marker_world_xform.txt")
    #SSE_R = 0
    SSE_t = 0
    for (Tm_c, Tl) in zip(marker_transforms, Tlinks):
        Tm_c_est = se3.mul(se3.mul(se3.inv(Tcamera), se3.inv(Tl)),
                           T_marker_assumed)
        SSE_t += vectorops.distanceSquared(Tm_c, Tm_c_est[1])
    print "RMSE translations (meters)", np.sqrt(SSE_t / len(Tlinks))
Example #4
0
def gen_grasp_images(max_variations=10):
    """Generates grasp training images for Problem 1b"""
    global camera_viewpoints
    if len(camera_viewpoints) == 0:
        #This code pops up the viewpoint editor
        edited = False
        for base in base_files:
            camera_viewpoints[base] = []
            camera_fn_template = os.path.join(
                "resources",
                os.path.splitext(base)[0] + '_camera_%02d.xform')
            index = 0
            while True:
                camera_fn = camera_fn_template % (index, )
                if not os.path.exists(camera_fn):
                    break
                xform = loader.load('RigidTransform', camera_fn)
                camera_viewpoints[base].append(xform)
                index += 1
            if len(camera_viewpoints[base]) > 0:
                #TODO: if you want to edit the camera transforms, comment this line out and replace it with "pass"
                continue
                #pass
            edited = True
            for i, xform in enumerate(camera_viewpoints[base]):
                print("Camera transform", base, i)
                sensor_xform = edit_camera_xform(
                    base,
                    xform,
                    title="Camera transform {} {}".format(base, i))
                camera_viewpoints[base][i] = sensor_xform
                camera_fn = camera_fn_template % (i, )
                loader.save(sensor_xform, 'RigidTransform', camera_fn)
            while True:
                if len(camera_viewpoints[base]) > 0:
                    print("Do you want to add another? (y/n)")
                    choice = input()
                else:
                    choice = 'y'
                if choice.strip() == 'y':
                    sensor_xform = edit_camera_xform(
                        base, title="New camera transform {}".format(base))
                    camera_viewpoints[base].append(sensor_xform)
                    camera_fn = camera_fn_template % (
                        len(camera_viewpoints[base]) - 1, )
                    loader.save(sensor_xform, 'RigidTransform', camera_fn)
                else:
                    break
        if edited:
            print("Quitting; run me again to render images")
            return

    #Here's where the main loop begins
    try:
        os.mkdir('image_dataset')
    except Exception:
        pass

    try:
        os.remove("image_dataset/metadata.csv")
    except Exception:
        pass
    with open("image_dataset/metadata.csv", 'w') as f:
        f.write(
            "world,view,view_transform,color_fn,depth_fn,grasp_fn,variation\n")

    total_image_count = 0
    for fn in glob.glob("generated_worlds/world_*.xml"):
        ofs = fn.find('.xml')
        index = fn[ofs - 4:ofs]
        world = WorldModel()
        world.readFile(fn)
        wtype = autodetect_world_type(world)
        if wtype == 'unknown':
            print("WARNING: DONT KNOW WORLD TYPE OF", fn)
        world_camera_viewpoints = camera_viewpoints[wtype + '.xml']
        assert len(world_camera_viewpoints) > 0

        #TODO: change appearances
        for i in range(world.numRigidObjects()):
            world.rigidObject(i).appearance().setSilhouette(0)
        for i in range(world.numTerrains()):
            world.terrain(i).appearance().setSilhouette(0)

        world.readFile('camera.rob')
        robot = world.robot(0)
        sensor = robot.sensor(0)
        vis.add("world", world)
        counters = [0, 0, total_image_count]

        def loop_through_sensors(
                world=world,
                sensor=sensor,
                world_camera_viewpoints=world_camera_viewpoints,
                index=index,
                counters=counters):
            viewno = counters[0]
            variation = counters[1]
            total_count = counters[2]
            print("Generating data for sensor view", viewno, "variation",
                  variation)
            sensor_xform = world_camera_viewpoints[viewno]

            #TODO: problem 1.B: perturb camera and change colors
            # Generate random axis, random angle, rotate about angle for orientation perturbation
            # Generate random axis, random dist, translate distance over axis for position perturbation
            rand_axis = np.random.rand(3)
            rand_axis = vectorops.unit(rand_axis)
            multiplier = np.random.choice([True, False], 1)
            rand_angle = (np.random.rand(1)[0] * 10 +
                          10) * (-1 if multiplier else 1)
            # print(rand_angle)
            R = so3.from_axis_angle((rand_axis, np.radians(rand_angle)))
            rand_axis = vectorops.unit(np.random.random(3))
            rand_dist = np.random.random(1)[0] * .10 + .10
            # print(rand_dist)
            t = vectorops.mul(rand_axis, rand_dist)
            sensor_xform = se3.mul((R, t), sensor_xform)
            sensing.set_sensor_xform(sensor, sensor_xform)

            rgb_filename = "image_dataset/color_%04d_var%04d.png" % (
                total_count, variation)
            depth_filename = "image_dataset/depth_%04d_var%04d.png" % (
                total_count, variation)
            grasp_filename = "image_dataset/grasp_%04d_var%04d.png" % (
                total_count, variation)

            #Generate sensor images
            sensor.kinematicReset()
            sensor.kinematicSimulate(world, 0.01)
            print("Done with kinematic simulate")
            rgb, depth = sensing.camera_to_images(sensor)
            print("Saving to", rgb_filename, depth_filename)
            Image.fromarray(rgb).save(rgb_filename)
            depth_scale = 8000
            depth_quantized = (depth * depth_scale).astype(np.uint32)
            Image.fromarray(depth_quantized).save(depth_filename)

            with open("image_dataset/metadata.csv", 'a') as f:
                line = "{},{},{},{},{},{},{}\n".format(
                    index, viewno, loader.write(sensor_xform,
                                                'RigidTransform'),
                    os.path.basename(rgb_filename),
                    os.path.basename(depth_filename),
                    os.path.basename(grasp_filename), variation)
                f.write(line)

            #calculate grasp map and save it
            grasp_map = make_grasp_map(world, total_count)
            grasp_map_quantized = (grasp_map * 255).astype(np.uint8)
            channels = ['score', 'opening', 'axis_heading', 'axis_elevation']
            for i, c in enumerate(channels):
                base, ext = os.path.splitext(grasp_filename)
                fn = base + '_' + c + ext
                Image.fromarray(grasp_map_quantized[:, :, i]).save(fn)

            #loop through variations and views
            counters[1] += 1
            if counters[1] >= max_variations:
                counters[1] = 0
                counters[0] += 1
                if counters[0] >= len(world_camera_viewpoints):
                    vis.show(False)
                counters[2] += 1

        print("Running render loop")
        vis.loop(callback=loop_through_sensors)
        total_image_count = counters[2]
Example #5
0
def testsave(obj, type, fn):
    t0 = time.time()
    res = loader.save(obj, type, fn)
    t1 = time.time()
    print("Time to save", fn, ":", t1 - t0)
    return res