Example #1
0
	return sum(s)/len(s)

#-----------------------------------------------------------
def get_s1():
	file_name = 'datasets/s1.txt'
	with open(file_name) as f:
		#header = f.readline()
		points = []
		for line in f:
			items = line.strip().split('    ')
			r = [
				float(items[0]),
				float(items[1]),
			]
			points.append( Point(r) )
	#random.shuffle(points)
	return points

#-----------------------------------------------------------

points = get_s1()
#print(points)
Point.set_features(0,1)
for k in range(3, 4):
	model = KMeans(points, 15, 0.01)
	model.cluster()
	# model.show()
	print("Done")
	print('k = ', k, 'silhouette = ', silhouette(model.points, model.clusters))

Example #2
0
# Md Lutfar Rahman
# [email protected]
# DataMining Assingment 4



from kmeans import Point, Cluster, KMeans
import random
from UserMatrix import UserMatrix

userMat = UserMatrix()
points = userMat.userpoints
fet = list(range(len(userMat.movieIds)))
k=3
#print(fet)
Point.set_features(*fet)

model = KMeans(points, k, 0.001)
model.cluster()
#print("clustring>>ended")
print('')
model.getIntraCentriodDensity()
print('')
model.getInterCentroidDensity()
Example #3
0

#-----------------------------------------------------------
def get_iris_data():
    file_name = 'datasets/iris.csv'
    with open(file_name) as f:
        header = f.readline()
        points = []
        for line in f:
            items = line.strip().split(',')
            r = [
                float(items[0]),
                float(items[1]),
                float(items[2]),
                float(items[3]), items[4]
            ]
            points.append(Point(r))
    random.shuffle(points)
    return points


#-----------------------------------------------------------

points = get_iris_data()
Point.set_features(0, 1, 2, 3)
for k in range(2, 10):
    model = KMeans(points, k, 0.01)
    model.cluster()
    # model.show()
    print('k = ', k, 'silhouette = ', silhouette(model.points, model.clusters))