class KeyBlockKey(Struct): def __init__(self, key_block=None, tag=Tags.DEFAULT): super(KeyBlockKey, self).__init__(tag) self.key_block = key_block self.validate() def read(self, istream): super(KeyBlockKey, self).read(istream) tstream = BytearrayStream(istream.read(self.length)) self.key_block = KeyBlock() self.key_block.read(tstream) self.is_oversized(tstream) self.validate() def write(self, ostream): tstream = BytearrayStream() self.key_block.write(tstream) # Write the length and value of the template attribute self.length = tstream.length() super(KeyBlockKey, self).write(ostream) ostream.write(tstream.buffer) def validate(self): self.__validate() def __validate(self): # TODO (peter-hamilton) Finish implementation. pass
class KeyBlockKey(Struct): def __init__(self, key_block=None, tag=Tags.DEFAULT): super(KeyBlockKey, self).__init__(tag) self.key_block = key_block self.validate() def read(self, istream, kmip_version=enums.KMIPVersion.KMIP_1_0): super(KeyBlockKey, self).read(istream, kmip_version=kmip_version) tstream = BytearrayStream(istream.read(self.length)) self.key_block = KeyBlock() self.key_block.read(tstream, kmip_version=kmip_version) self.is_oversized(tstream) self.validate() def write(self, ostream, kmip_version=enums.KMIPVersion.KMIP_1_0): tstream = BytearrayStream() self.key_block.write(tstream, kmip_version=kmip_version) # Write the length and value of the template attribute self.length = tstream.length() super(KeyBlockKey, self).write(ostream, kmip_version=kmip_version) ostream.write(tstream.buffer) def validate(self): self.__validate() def __validate(self): # TODO (peter-hamilton) Finish implementation. pass
def _build_key_block(self, value): key_type = value.get('key_format_type') key_compression_type = value.get('key_compression_type') key_value = value.get('key_value') cryptographic_algorithm = value.get('cryptographic_algorithm') cryptographic_length = value.get('cryptographic_length') key_wrapping_data = value.get('key_wrapping_data') key_format_type = KeyFormatType(key_type) key_comp_type = None if key_compression_type is not None: key_comp_type = KeyBlock.KeyCompressionType(key_compression_type) key_material = KeyMaterial(key_value) key_value = KeyValue(key_material) crypto_algorithm = None if cryptographic_algorithm is not None: crypto_algorithm = CryptographicAlgorithm(cryptographic_algorithm) crypto_length = None if cryptographic_length is not None: crypto_length = CryptographicLength(cryptographic_length) key_wrap_data = None if key_wrapping_data: # TODO (peter-hamilton) This currently isn't used in the tests # TODO (peter-hamilton) but needs to be updated to properly # TODO (peter-hamilton) create a KeyWrappingData object. key_wrap_data = KeyWrappingData(**key_wrapping_data) key_block = KeyBlock(key_format_type, key_comp_type, key_value, crypto_algorithm, crypto_length, key_wrap_data) return key_block
def read(self, istream, kmip_version=enums.KMIPVersion.KMIP_1_0): super(KeyBlockKey, self).read(istream, kmip_version=kmip_version) tstream = BytearrayStream(istream.read(self.length)) self.key_block = KeyBlock() self.key_block.read(tstream, kmip_version=kmip_version) self.is_oversized(tstream) self.validate()
def read(self, istream): super(KeyBlockKey, self).read(istream) tstream = BytearrayStream(istream.read(self.length)) self.key_block = KeyBlock() self.key_block.read(tstream) self.is_oversized(tstream) self.validate()
def read(self, istream, kmip_version=enums.KMIPVersion.KMIP_1_0): super(SecretData, self).read(istream, kmip_version=kmip_version) tstream = BytearrayStream(istream.read(self.length)) self.secret_data_type = SecretData.SecretDataType() self.key_block = KeyBlock() self.secret_data_type.read(tstream, kmip_version=kmip_version) self.key_block.read(tstream, kmip_version=kmip_version) self.is_oversized(tstream) self.validate()
def read(self, istream): super(SecretData, self).read(istream) tstream = BytearrayStream(istream.read(self.length)) self.secret_data_type = SecretData.SecretDataType() self.key_block = KeyBlock() self.secret_data_type.read(tstream) self.key_block.read(tstream) self.is_oversized(tstream) self.validate()
class SecretData(Struct): class SecretDataType(Enumeration): ENUM_TYPE = enums.SecretDataType def __init__(self, value=None): super(SecretData.SecretDataType, self).__init__( value, Tags.SECRET_DATA_TYPE) def __init__(self, secret_data_type=None, key_block=None): super(SecretData, self).__init__(Tags.SECRET_DATA) self.secret_data_type = secret_data_type self.key_block = key_block self.validate() def read(self, istream): super(SecretData, self).read(istream) tstream = BytearrayStream(istream.read(self.length)) self.secret_data_type = SecretData.SecretDataType() self.key_block = KeyBlock() self.secret_data_type.read(tstream) self.key_block.read(tstream) self.is_oversized(tstream) self.validate() def write(self, ostream): tstream = BytearrayStream() self.secret_data_type.write(tstream) self.key_block.write(tstream) # Write the length and value of the template attribute self.length = tstream.length() super(SecretData, self).write(ostream) ostream.write(tstream.buffer) def validate(self): self.__validate() def __validate(self): # TODO (peter-hamilton) Finish implementation. pass
def _get_kmip_secret(self, secret_dto): """Builds a KMIP object from a SecretDTO This is needed for register calls. The Barbican object needs to be converted to KMIP object before it can be stored :param secret_dto: SecretDTO of secret to be stored :returns: KMIP object """ secret_type = secret_dto.type object_type, key_format_type = (self._map_type_ss_to_kmip(secret_type)) normalized_secret = self._normalize_secret(secret_dto.secret, secret_type) kmip_object = None if object_type == enums.ObjectType.CERTIFICATE: kmip_object = Certificate( certificate_type=enums.CertificateTypeEnum.X_509, certificate_value=normalized_secret) elif object_type == enums.ObjectType.OPAQUE_DATA: opaque_type = Opaque.OpaqueDataType(enums.OpaqueDataType.NONE) opaque_value = Opaque.OpaqueDataValue(normalized_secret) kmip_object = Opaque(opaque_type, opaque_value) elif (object_type == enums.ObjectType.SYMMETRIC_KEY or object_type == enums.ObjectType.SECRET_DATA or object_type == enums.ObjectType.PRIVATE_KEY or object_type == enums.ObjectType.PUBLIC_KEY): key_material = KeyMaterial(normalized_secret) key_value = KeyValue(key_material) key_spec = secret_dto.key_spec algorithm = None if key_spec.alg is not None: algorithm_name = self._map_algorithm_ss_to_kmip( key_spec.alg.lower()) algorithm = CryptographicAlgorithm(algorithm_name) bit_length = None if key_spec.bit_length is not None: bit_length = CryptographicLength(key_spec.bit_length) key_block = KeyBlock( key_format_type=misc.KeyFormatType(key_format_type), key_compression_type=None, key_value=key_value, cryptographic_algorithm=algorithm, cryptographic_length=bit_length, key_wrapping_data=None) if object_type == enums.ObjectType.SYMMETRIC_KEY: kmip_object = SymmetricKey(key_block) elif object_type == enums.ObjectType.PRIVATE_KEY: kmip_object = PrivateKey(key_block) elif object_type == enums.ObjectType.PUBLIC_KEY: kmip_object = PublicKey(key_block) elif object_type == enums.ObjectType.SECRET_DATA: kind = SecretData.SecretDataType(enums.SecretDataType.PASSWORD) return SecretData(secret_data_type=kind, key_block=key_block) return kmip_object
def _gen_symmetric_key(self, bit_length, crypto_alg): key_format_type = KeyFormatType(KeyFormatTypeEnum.RAW) key_material = KeyMaterial(os.urandom(int(bit_length/8))) key_value = KeyValue(key_material) crypto_length = CryptographicLength(bit_length) key_block = KeyBlock(key_format_type, None, key_value, crypto_alg, crypto_length, None) return SymmetricKey(key_block)
class SecretData(Struct): class SecretDataType(Enumeration): def __init__(self, value=None): super(SecretData.SecretDataType, self).__init__( enums.SecretDataType, value, Tags.SECRET_DATA_TYPE) def __init__(self, secret_data_type=None, key_block=None): super(SecretData, self).__init__(Tags.SECRET_DATA) self.secret_data_type = secret_data_type self.key_block = key_block self.validate() def read(self, istream, kmip_version=enums.KMIPVersion.KMIP_1_0): super(SecretData, self).read(istream, kmip_version=kmip_version) tstream = BytearrayStream(istream.read(self.length)) self.secret_data_type = SecretData.SecretDataType() self.key_block = KeyBlock() self.secret_data_type.read(tstream, kmip_version=kmip_version) self.key_block.read(tstream, kmip_version=kmip_version) self.is_oversized(tstream) self.validate() def write(self, ostream, kmip_version=enums.KMIPVersion.KMIP_1_0): tstream = BytearrayStream() self.secret_data_type.write(tstream, kmip_version=kmip_version) self.key_block.write(tstream, kmip_version=kmip_version) # Write the length and value of the template attribute self.length = tstream.length() super(SecretData, self).write(ostream, kmip_version=kmip_version) ostream.write(tstream.buffer) def validate(self): self.__validate() def __validate(self): # TODO (peter-hamilton) Finish implementation. pass
def build_key_block(key_format_type, key_value, cryptographic_algorithm, cryptographic_length): key_material = KeyMaterial(key_value) key_value = KeyValue(key_material) return KeyBlock(key_format_type=KeyFormatType(key_format_type), key_compression_type=None, key_value=key_value, cryptographic_algorithm=cryptographic_algorithm, cryptographic_length=cryptographic_length, key_wrapping_data=None)
def _get_symmetric_key(self): # only need usage attribute attrs = [self._get_attrs()[1]] key_format_type = KeyFormatType(KeyFormatTypeEnum.RAW) key_material = KeyMaterial(self.key) key_value = KeyValue(key_material, attrs) crypto_alg = CryptographicAlgorithm(self.algorithm_name) crypto_length = CryptographicLength(self.key_length) usage = CryptographicUsageMask(self.usage_mask) key_block = KeyBlock(key_format_type, None, key_value, crypto_alg, crypto_length, usage) return SymmetricKey(key_block)
def read(self, istream): super(SplitKey, self).read(istream) tstream = BytearrayStream(istream.read(self.length)) self.split_key_parts = SplitKey.SplitKeyParts() self.split_key_parts.read(tstream) self.key_part_identifier = SplitKey.KeyPartIdentifier() self.key_part_identifier.read(tstream) self.split_key_threshold = SplitKey.SplitKeyThreshold() self.split_key_threshold.read(tstream) if self.is_tag_next(Tags.PRIME_FIELD_SIZE, tstream): self.prime_field_size = SplitKey.PrimeFieldSize() self.prime_field_size.read(tstream) self.key_block = KeyBlock() self.key_block.read(tstream) self.is_oversized(tstream) self.validate()
class SplitKey(Struct): class SplitKeyParts(Integer): def __init__(self, value=None): super(SplitKey.SplitKeyParts, self).__init__( value, Tags.SPLIT_KEY_PARTS) class KeyPartIdentifier(Integer): def __init__(self, value=None): super(SplitKey.KeyPartIdentifier, self).__init__( value, Tags.KEY_PART_IDENTIFIER) class SplitKeyThreshold(Integer): def __init__(self, value=None): super(SplitKey.SplitKeyThreshold, self).__init__( value, Tags.SPLIT_KEY_THRESHOLD) class SplitKeyMethod(Enumeration): def __init__(self, value=None): super(SplitKey.SplitKeyMethod, self).__init__( enums.SplitKeyMethod, value, Tags.SPLIT_KEY_METHOD) class PrimeFieldSize(BigInteger): def __init__(self, value=None): super(SplitKey.PrimeFieldSize, self).__init__( value, Tags.PRIME_FIELD_SIZE) def __init__(self, split_key_parts=None, key_part_identifier=None, split_key_threshold=None, split_key_method=None, prime_field_size=None, key_block=None): super(SplitKey, self).__init__(Tags.SPLIT_KEY) self.split_key_parts = split_key_parts self.key_part_identifier = key_part_identifier self.split_key_threshold = split_key_threshold self.split_key_method = split_key_method self.prime_field_size = prime_field_size self.key_block = key_block self.validate() def read(self, istream): super(SplitKey, self).read(istream) tstream = BytearrayStream(istream.read(self.length)) self.split_key_parts = SplitKey.SplitKeyParts() self.split_key_parts.read(tstream) self.key_part_identifier = SplitKey.KeyPartIdentifier() self.key_part_identifier.read(tstream) self.split_key_threshold = SplitKey.SplitKeyThreshold() self.split_key_threshold.read(tstream) if self.is_tag_next(Tags.PRIME_FIELD_SIZE, tstream): self.prime_field_size = SplitKey.PrimeFieldSize() self.prime_field_size.read(tstream) self.key_block = KeyBlock() self.key_block.read(tstream) self.is_oversized(tstream) self.validate() def write(self, ostream): tstream = BytearrayStream() self.split_key_parts.write(tstream) self.key_part_identifier.write(tstream) self.split_key_threshold.write(tstream) self.split_key_method.write(tstream) if self.prime_field_size is not None: self.prime_field_size.write(tstream) self.key_block.write(tstream) # Write the length and value of the template attribute self.length = tstream.length() super(SplitKey, self).write(ostream) ostream.write(tstream.buffer) def validate(self): self.__validate() def __validate(self): # TODO (peter-hamilton) Finish implementation. pass
def test_passphrase_register_get_destroy(self): """ Tests that passphrases can be properly registered, retrieved, and destroyed """ # properties copied from test case example : # http://docs.oasis-open.org/kmip/testcases/v1.1/cn01/kmip-testcases-v1.1-cn01.html#_Toc333488777 pass_obj_type = ObjectType.SECRET_DATA mask_flags = [CryptographicUsageMask.VERIFY] attribute_type = AttributeType.CRYPTOGRAPHIC_USAGE_MASK usage_mask = self.attr_factory.create_attribute( attribute_type, mask_flags) name = Attribute.AttributeName('Name') pass_name = 'Integration Test - Register-Get-Destroy Passphrase' pass_name_value = Name.NameValue(pass_name) name_type = Name.NameType(NameType.UNINTERPRETED_TEXT_STRING) pass_value = Name(name_value=pass_name_value, name_type=name_type) pass_name_attr = Attribute(attribute_name=name, attribute_value=pass_value) pass_attributes = [usage_mask, pass_name_attr] pass_template_attribute = TemplateAttribute(attributes=pass_attributes) pass_format_type = SecretData.SecretDataType(SecretDataType.PASSWORD) key_format_type = KeyFormatType(KeyFormatTypeEnum.OPAQUE) key_data = b'\x70\x65\x65\x6b\x2d\x61\x2d\x62\x6f\x6f\x21\x21' key_material = KeyMaterial(key_data) key_value = KeyValue(key_material) key_block = KeyBlock(key_format_type=key_format_type, key_compression_type=None, key_value=key_value, key_wrapping_data=None) pass_obj = SecretData(secret_data_type=pass_format_type, key_block=key_block) pass_result = self.client.register(pass_obj_type, pass_template_attribute, pass_obj, credential=None) self._check_result_status(pass_result, ResultStatus, ResultStatus.SUCCESS) self._check_uuid(pass_result.uuid.value, str) # Check that the returned key bytes match what was provided pass_uuid = pass_result.uuid.value pass_result = self.client.get(uuid=pass_uuid, credential=None) self._check_result_status(pass_result, ResultStatus, ResultStatus.SUCCESS) self._check_object_type(pass_result.object_type.value, ObjectType, ObjectType.SECRET_DATA) self._check_uuid(pass_result.uuid.value, str) # Check the secret type pass_secret = pass_result.secret pass_secret_expected = SecretData self.assertIsInstance(pass_secret, pass_secret_expected) pass_material = pass_result.secret.key_block.key_value.key_material\ .value expected = key_data self.assertEqual(expected, pass_material) self.logger.debug('Destroying cert: ' + pass_name + '\nWith " "UUID: ' + pass_result.uuid.value) pass_result = self.client.destroy(pass_result.uuid.value) self._check_result_status(pass_result, ResultStatus, ResultStatus.SUCCESS) self._check_uuid(pass_result.uuid.value, str) # Verify the secret was destroyed pass_result_destroyed_result = self.client.get(uuid=pass_uuid, credential=None) self._check_result_status(pass_result_destroyed_result, ResultStatus, ResultStatus.OPERATION_FAILED) expected = ResultReason pass_observed = type(pass_result_destroyed_result.result_reason.value) self.assertEqual(expected, pass_observed)
def test_public_key_register_get_destroy(self): """ Tests that public keys are properly registered, retrieved, and destroyed. """ pub_key_object_type = ObjectType.PUBLIC_KEY mask_flags = [ CryptographicUsageMask.ENCRYPT, CryptographicUsageMask.DECRYPT ] attribute_type = AttributeType.CRYPTOGRAPHIC_USAGE_MASK usage_mask = self.attr_factory.create_attribute( attribute_type, mask_flags) name = Attribute.AttributeName('Name') key_name = 'Integration Test - Register-Get-Destroy Key -' pub_name_value = Name.NameValue(key_name + " Public") name_type = Name.NameType(NameType.UNINTERPRETED_TEXT_STRING) pub_value = Name(name_value=pub_name_value, name_type=name_type) pub_name = Attribute(attribute_name=name, attribute_value=pub_value) pub_key_attributes = [usage_mask, pub_name] public_template_attribute = TemplateAttribute( attributes=pub_key_attributes) key_format_type = KeyFormatType(KeyFormatTypeEnum.RAW) key_data = ( b'\x30\x81\x9F\x30\x0D\x06\x09\x2A\x86\x48\x86\xF7\x0D\x01\x01\x01' b'\x05\x00\x03\x81\x8D\x00\x30\x81\x89\x02\x81\x81\x00\x93\x04\x51' b'\xC9\xEC\xD9\x4F\x5B\xB9\xDA\x17\xDD\x09\x38\x1B\xD2\x3B\xE4\x3E' b'\xCA\x8C\x75\x39\xF3\x01\xFC\x8A\x8C\xD5\xD5\x27\x4C\x3E\x76\x99' b'\xDB\xDC\x71\x1C\x97\xA7\xAA\x91\xE2\xC5\x0A\x82\xBD\x0B\x10\x34' b'\xF0\xDF\x49\x3D\xEC\x16\x36\x24\x27\xE5\x8A\xCC\xE7\xF6\xCE\x0F' b'\x9B\xCC\x61\x7B\xBD\x8C\x90\xD0\x09\x4A\x27\x03\xBA\x0D\x09\xEB' b'\x19\xD1\x00\x5F\x2F\xB2\x65\x52\x6A\xAC\x75\xAF\x32\xF8\xBC\x78' b'\x2C\xDE\xD2\xA5\x7F\x81\x1E\x03\xEA\xF6\x7A\x94\x4D\xE5\xE7\x84' b'\x13\xDC\xA8\xF2\x32\xD0\x74\xE6\xDC\xEA\x4C\xEC\x9F\x02\x03\x01' b'\x00\x01') key_material = KeyMaterial(key_data) key_value = KeyValue(key_material) algorithm_value = CryptoAlgorithmEnum.RSA cryptographic_algorithm = CryptographicAlgorithm(algorithm_value) cryptographic_length = CryptographicLength(2048) key_block = KeyBlock(key_format_type=key_format_type, key_compression_type=None, key_value=key_value, cryptographic_algorithm=cryptographic_algorithm, cryptographic_length=cryptographic_length, key_wrapping_data=None) pub_secret = PublicKey(key_block) pub_key_result = self.client.register(pub_key_object_type, public_template_attribute, pub_secret, credential=None) self._check_result_status(pub_key_result, ResultStatus, ResultStatus.SUCCESS) # Check that the returned key bytes match what was provided pub_uuid = pub_key_result.uuid.value pub_key_result = self.client.get(uuid=pub_uuid, credential=None) self._check_result_status(pub_key_result, ResultStatus, ResultStatus.SUCCESS) self._check_object_type(pub_key_result.object_type.value, ObjectType, ObjectType.PUBLIC_KEY) self._check_uuid(pub_key_result.uuid.value, str) # Check the secret type pub_secret = pub_key_result.secret pub_expected = PublicKey self.assertIsInstance(pub_secret, pub_expected) pub_key_block = pub_key_result.secret.key_block pub_key_value = pub_key_block.key_value pub_key_material = pub_key_value.key_material expected = key_data pub_observed = pub_key_material.value self.assertEqual(expected, pub_observed) self.logger.debug('Destroying key: ' + key_name + " Public" + '\nWith " "UUID: ' + pub_key_result.uuid.value) pub_result = self.client.destroy(pub_key_result.uuid.value) self._check_result_status(pub_result, ResultStatus, ResultStatus.SUCCESS) self._check_uuid(pub_result.uuid.value, str) pub_key_destroyed_result = self.client.get(uuid=pub_uuid, credential=None) self._check_result_status(pub_key_destroyed_result, ResultStatus, ResultStatus.OPERATION_FAILED) expected = ResultReason pub_observed = type(pub_key_destroyed_result.result_reason.value) self.assertEqual(expected, pub_observed)
def test_private_key_register_get_destroy(self): """ Tests that private keys are properly registered, retrieved, and destroyed. """ priv_key_object_type = ObjectType.PRIVATE_KEY mask_flags = [ CryptographicUsageMask.ENCRYPT, CryptographicUsageMask.DECRYPT ] attribute_type = AttributeType.CRYPTOGRAPHIC_USAGE_MASK usage_mask = self.attr_factory.create_attribute( attribute_type, mask_flags) name = Attribute.AttributeName('Name') key_name = 'Integration Test - Register-Get-Destroy Key -' priv_name_value = Name.NameValue(key_name + " Private") name_type = Name.NameType(NameType.UNINTERPRETED_TEXT_STRING) priv_value = Name(name_value=priv_name_value, name_type=name_type) priv_name = Attribute(attribute_name=name, attribute_value=priv_value) priv_key_attributes = [usage_mask, priv_name] private_template_attribute = TemplateAttribute( attributes=priv_key_attributes) key_format_type = KeyFormatType(KeyFormatTypeEnum.RAW) key_data = ( b'\x30\x82\x02\x76\x02\x01\x00\x30\x0D\x06\x09\x2A\x86\x48\x86\xF7' b'\x0D\x01\x01\x01\x05\x00\x04\x82\x02\x60\x30\x82\x02\x5C\x02\x01' b'\x00\x02\x81\x81\x00\x93\x04\x51\xC9\xEC\xD9\x4F\x5B\xB9\xDA\x17' b'\xDD\x09\x38\x1B\xD2\x3B\xE4\x3E\xCA\x8C\x75\x39\xF3\x01\xFC\x8A' b'\x8C\xD5\xD5\x27\x4C\x3E\x76\x99\xDB\xDC\x71\x1C\x97\xA7\xAA\x91' b'\xE2\xC5\x0A\x82\xBD\x0B\x10\x34\xF0\xDF\x49\x3D\xEC\x16\x36\x24' b'\x27\xE5\x8A\xCC\xE7\xF6\xCE\x0F\x9B\xCC\x61\x7B\xBD\x8C\x90\xD0' b'\x09\x4A\x27\x03\xBA\x0D\x09\xEB\x19\xD1\x00\x5F\x2F\xB2\x65\x52' b'\x6A\xAC\x75\xAF\x32\xF8\xBC\x78\x2C\xDE\xD2\xA5\x7F\x81\x1E\x03' b'\xEA\xF6\x7A\x94\x4D\xE5\xE7\x84\x13\xDC\xA8\xF2\x32\xD0\x74\xE6' b'\xDC\xEA\x4C\xEC\x9F\x02\x03\x01\x00\x01\x02\x81\x80\x0B\x6A\x7D' b'\x73\x61\x99\xEA\x48\xA4\x20\xE4\x53\x7C\xA0\xC7\xC0\x46\x78\x4D' b'\xCB\xEA\xA6\x3B\xAE\xBC\x0B\xC1\x32\x78\x74\x49\xCD\xE8\xD7\xCA' b'\xD0\xC0\xC8\x63\xC0\xFE\xFB\x06\xC3\x06\x2B\xEF\xC5\x00\x33\xEC' b'\xF8\x7B\x4E\x33\xA9\xBE\x7B\xCB\xC8\xF1\x51\x1A\xE2\x15\xE8\x0D' b'\xEB\x5D\x8A\xF2\xBD\x31\x31\x9D\x78\x21\x19\x66\x40\x93\x5A\x0C' b'\xD6\x7C\x94\x59\x95\x79\xF2\x10\x0D\x65\xE0\x38\x83\x1F\xDA\xFB' b'\x0D\xBE\x2B\xBD\xAC\x00\xA6\x96\xE6\x7E\x75\x63\x50\xE1\xC9\x9A' b'\xCE\x11\xA3\x6D\xAB\xAC\x3E\xD3\xE7\x30\x96\x00\x59\x02\x41\x00' b'\xDD\xF6\x72\xFB\xCC\x5B\xDA\x3D\x73\xAF\xFC\x4E\x79\x1E\x0C\x03' b'\x39\x02\x24\x40\x5D\x69\xCC\xAA\xBC\x74\x9F\xAA\x0D\xCD\x4C\x25' b'\x83\xC7\x1D\xDE\x89\x41\xA7\xB9\xAA\x03\x0F\x52\xEF\x14\x51\x46' b'\x6C\x07\x4D\x4D\x33\x8F\xE6\x77\x89\x2A\xCD\x9E\x10\xFD\x35\xBD' b'\x02\x41\x00\xA9\x8F\xBC\x3E\xD6\xB4\xC6\xF8\x60\xF9\x71\x65\xAC' b'\x2F\x7B\xB6\xF2\xE2\xCB\x19\x2A\x9A\xBD\x49\x79\x5B\xE5\xBC\xF3' b'\x7D\x8E\xE6\x9A\x6E\x16\x9C\x24\xE5\xC3\x2E\x4E\x7F\xA3\x32\x65' b'\x46\x14\x07\xF9\x52\xBA\x49\xE2\x04\x81\x8A\x2F\x78\x5F\x11\x3F' b'\x92\x2B\x8B\x02\x40\x25\x3F\x94\x70\x39\x0D\x39\x04\x93\x03\x77' b'\x7D\xDB\xC9\x75\x0E\x9D\x64\x84\x9C\xE0\x90\x3E\xAE\x70\x4D\xC9' b'\xF5\x89\xB7\x68\x0D\xEB\x9D\x60\x9F\xD5\xBC\xD4\xDE\xCD\x6F\x12' b'\x05\x42\xE5\xCF\xF5\xD7\x6F\x2A\x43\xC8\x61\x5F\xB5\xB3\xA9\x21' b'\x34\x63\x79\x7A\xA9\x02\x41\x00\xA1\xDD\xF0\x23\xC0\xCD\x94\xC0' b'\x19\xBB\x26\xD0\x9B\x9E\x3C\xA8\xFA\x97\x1C\xB1\x6A\xA5\x8B\x9B' b'\xAF\x79\xD6\x08\x1A\x1D\xBB\xA4\x52\xBA\x53\x65\x3E\x28\x04\xBA' b'\x98\xFF\x69\xE8\xBB\x1B\x3A\x16\x1E\xA2\x25\xEA\x50\x14\x63\x21' b'\x6A\x8D\xAB\x9B\x88\xA7\x5E\x5F\x02\x40\x61\x78\x64\x6E\x11\x2C' b'\xF7\x9D\x92\x1A\x8A\x84\x3F\x17\xF6\xE7\xFF\x97\x4F\x68\x81\x22' b'\x36\x5B\xF6\x69\x0C\xDF\xC9\x96\xE1\x89\x09\x52\xEB\x38\x20\xDD' b'\x18\x90\xEC\x1C\x86\x19\xE8\x7A\x2B\xD3\x8F\x9D\x03\xB3\x7F\xAC' b'\x74\x2E\xFB\x74\x8C\x78\x85\x94\x2C\x39') key_material = KeyMaterial(key_data) key_value = KeyValue(key_material) algorithm_value = CryptoAlgorithmEnum.RSA cryptographic_algorithm = CryptographicAlgorithm(algorithm_value) cryptographic_length = CryptographicLength(2048) key_block = KeyBlock(key_format_type=key_format_type, key_compression_type=None, key_value=key_value, cryptographic_algorithm=cryptographic_algorithm, cryptographic_length=cryptographic_length, key_wrapping_data=None) priv_secret = PrivateKey(key_block) priv_key_result = self.client.register(priv_key_object_type, private_template_attribute, priv_secret, credential=None) self._check_result_status(priv_key_result, ResultStatus, ResultStatus.SUCCESS) self._check_uuid(priv_key_result.uuid.value, str) # Check that the returned key bytes match what was provided priv_uuid = priv_key_result.uuid.value priv_key_result = self.client.get(uuid=priv_uuid, credential=None) self._check_result_status(priv_key_result, ResultStatus, ResultStatus.SUCCESS) self._check_object_type(priv_key_result.object_type.value, ObjectType, ObjectType.PRIVATE_KEY) self._check_uuid(priv_key_result.uuid.value, str) # Check the secret type priv_secret = priv_key_result.secret priv_expected = PrivateKey self.assertIsInstance(priv_secret, priv_expected) priv_key_block = priv_key_result.secret.key_block priv_key_value = priv_key_block.key_value priv_key_material = priv_key_value.key_material expected = key_data priv_observed = priv_key_material.value self.assertEqual(expected, priv_observed) self.logger.debug('Destroying key: ' + key_name + " Private" + '\nWith " "UUID: ' + priv_key_result.uuid.value) priv_result = self.client.destroy(priv_key_result.uuid.value) self._check_result_status(priv_result, ResultStatus, ResultStatus.SUCCESS) self._check_uuid(priv_result.uuid.value, str) # Verify the secret was destroyed priv_key_destroyed_result = self.client.get(uuid=priv_uuid, credential=None) self._check_result_status(priv_key_destroyed_result, ResultStatus, ResultStatus.OPERATION_FAILED) expected = ResultReason priv_observed = type(priv_key_destroyed_result.result_reason.value) self.assertEqual(expected, priv_observed)
def test_symmetric_key_register_get_destroy(self): """ Tests that symmetric keys are properly registered, retrieved, and destroyed. """ object_type = ObjectType.SYMMETRIC_KEY algorithm_value = CryptoAlgorithmEnum.AES mask_flags = [ CryptographicUsageMask.ENCRYPT, CryptographicUsageMask.DECRYPT ] attribute_type = AttributeType.CRYPTOGRAPHIC_USAGE_MASK usage_mask = self.attr_factory.create_attribute( attribute_type, mask_flags) name = Attribute.AttributeName('Name') key_name = 'Integration Test - Register-Get-Destroy Key' name_value = Name.NameValue(key_name) name_type = Name.NameType(NameType.UNINTERPRETED_TEXT_STRING) value = Name(name_value=name_value, name_type=name_type) name = Attribute(attribute_name=name, attribute_value=value) attributes = [usage_mask, name] template_attribute = TemplateAttribute(attributes=attributes) key_format_type = KeyFormatType(KeyFormatTypeEnum.RAW) key_data = ( b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00') key_material = KeyMaterial(key_data) key_value = KeyValue(key_material) cryptographic_algorithm = CryptographicAlgorithm(algorithm_value) cryptographic_length = CryptographicLength(128) key_block = KeyBlock(key_format_type=key_format_type, key_compression_type=None, key_value=key_value, cryptographic_algorithm=cryptographic_algorithm, cryptographic_length=cryptographic_length, key_wrapping_data=None) secret = SymmetricKey(key_block) result = self.client.register(object_type, template_attribute, secret, credential=None) self._check_result_status(result, ResultStatus, ResultStatus.SUCCESS) self._check_uuid(result.uuid.value, str) # Check that the returned key bytes match what was provided uuid = result.uuid.value result = self.client.get(uuid=uuid, credential=None) self._check_result_status(result, ResultStatus, ResultStatus.SUCCESS) self._check_object_type(result.object_type.value, ObjectType, ObjectType.SYMMETRIC_KEY) self._check_uuid(result.uuid.value, str) # Check the secret type secret = result.secret expected = SymmetricKey self.assertIsInstance(secret, expected) key_block = result.secret.key_block key_value = key_block.key_value key_material = key_value.key_material expected = key_data observed = key_material.value self.assertEqual(expected, observed) self.logger.debug('Destroying key: ' + key_name + '\nWith UUID: ' + result.uuid.value) result = self.client.destroy(result.uuid.value) self._check_result_status(result, ResultStatus, ResultStatus.SUCCESS) self._check_uuid(result.uuid.value, str) # Verify the secret was destroyed result = self.client.get(uuid=uuid, credential=None) self._check_result_status(result, ResultStatus, ResultStatus.OPERATION_FAILED) expected = ResultReason observed = type(result.result_reason.value) self.assertEqual(expected, observed) expected = ResultReason.ITEM_NOT_FOUND observed = result.result_reason.value self.assertEqual(expected, observed)
def test_register(self): credential_type = CredentialType.USERNAME_AND_PASSWORD credential_value = {'Username': '******', 'Password': '******'} credential = self.cred_factory.create_credential( credential_type, credential_value) object_type = ObjectType.SYMMETRIC_KEY algorithm_value = CryptoAlgorithmEnum.AES mask_flags = [ CryptographicUsageMask.ENCRYPT, CryptographicUsageMask.DECRYPT ] attribute_type = AttributeType.CRYPTOGRAPHIC_USAGE_MASK usage_mask = self.attr_factory.create_attribute( attribute_type, mask_flags) attributes = [usage_mask] template_attribute = TemplateAttribute(attributes=attributes) key_format_type = KeyFormatType(KeyFormatTypeEnum.RAW) key_data = ( b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00') key_material = KeyMaterial(key_data) key_value = KeyValue(key_material) cryptographic_algorithm = CryptographicAlgorithm(algorithm_value) cryptographic_length = CryptographicLength(128) key_block = KeyBlock(key_format_type=key_format_type, key_compression_type=None, key_value=key_value, cryptographic_algorithm=cryptographic_algorithm, cryptographic_length=cryptographic_length, key_wrapping_data=None) secret = SymmetricKey(key_block) result = self.client.register(object_type, template_attribute, secret, credential) self._check_result_status(result.result_status.value, ResultStatus, ResultStatus.SUCCESS) self._check_uuid(result.uuid.value, str) # Check the template attribute type self._check_template_attribute(result.template_attribute, TemplateAttribute, 1, [[str, 'Unique Identifier', str, None]]) # Check that the returned key bytes match what was provided uuid = result.uuid.value result = self.client.get(uuid=uuid, credential=credential) self._check_result_status(result.result_status.value, ResultStatus, ResultStatus.SUCCESS) self._check_object_type(result.object_type.value, ObjectType, ObjectType.SYMMETRIC_KEY) self._check_uuid(result.uuid.value, str) # Check the secret type secret = result.secret expected = SymmetricKey message = utils.build_er_error(result.__class__, 'type', expected, secret, 'secret') self.assertIsInstance(secret, expected, message) key_block = result.secret.key_block key_value = key_block.key_value key_material = key_value.key_material expected = key_data observed = key_material.value message = utils.build_er_error(key_material.__class__, 'value', expected, observed, 'value') self.assertEqual(expected, observed, message)
class SplitKey(Struct): class SplitKeyParts(Integer): def __init__(self, value=None): super(SplitKey.SplitKeyParts, self).__init__(value, Tags.SPLIT_KEY_PARTS) class KeyPartIdentifier(Integer): def __init__(self, value=None): super(SplitKey.KeyPartIdentifier, self).__init__(value, Tags.KEY_PART_IDENTIFIER) class SplitKeyThreshold(Integer): def __init__(self, value=None): super(SplitKey.SplitKeyThreshold, self).__init__(value, Tags.SPLIT_KEY_THRESHOLD) class SplitKeyMethod(Enumeration): def __init__(self, value=None): super(SplitKey.SplitKeyMethod, self).__init__(enums.SplitKeyMethod, value, Tags.SPLIT_KEY_METHOD) class PrimeFieldSize(BigInteger): def __init__(self, value=None): super(SplitKey.PrimeFieldSize, self).__init__(value, Tags.PRIME_FIELD_SIZE) def __init__(self, split_key_parts=None, key_part_identifier=None, split_key_threshold=None, split_key_method=None, prime_field_size=None, key_block=None): super(SplitKey, self).__init__(Tags.SPLIT_KEY) self.split_key_parts = split_key_parts self.key_part_identifier = key_part_identifier self.split_key_threshold = split_key_threshold self.split_key_method = split_key_method self.prime_field_size = prime_field_size self.key_block = key_block self.validate() def read(self, istream): super(SplitKey, self).read(istream) tstream = BytearrayStream(istream.read(self.length)) self.split_key_parts = SplitKey.SplitKeyParts() self.split_key_parts.read(tstream) self.key_part_identifier = SplitKey.KeyPartIdentifier() self.key_part_identifier.read(tstream) self.split_key_threshold = SplitKey.SplitKeyThreshold() self.split_key_threshold.read(tstream) if self.is_tag_next(Tags.PRIME_FIELD_SIZE, tstream): self.prime_field_size = SplitKey.PrimeFieldSize() self.prime_field_size.read(tstream) self.key_block = KeyBlock() self.key_block.read(tstream) self.is_oversized(tstream) self.validate() def write(self, ostream): tstream = BytearrayStream() self.split_key_parts.write(tstream) self.key_part_identifier.write(tstream) self.split_key_threshold.write(tstream) self.split_key_method.write(tstream) if self.prime_field_size is not None: self.prime_field_size.write(tstream) self.key_block.write(tstream) # Write the length and value of the template attribute self.length = tstream.length() super(SplitKey, self).write(ostream) ostream.write(tstream.buffer) def validate(self): self.__validate() def __validate(self): # TODO (peter-hamilton) Finish implementation. pass