X[:, :, 2, :] = allZCoordinates - meanValue return X train3 = ReduceData(train3) train4 = ReduceData(train4) test3 = ReduceData(test3) test4 = ReduceData(test4) train3 = CenterData(train3) train4 = CenterData(train4) test3 = CenterData(test3) test4 = CenterData(test4) trainX, trainy = ReshapeData(train3, train4) testX, testy = ReshapeData(test3, test4) knn = knn.KNN() knn.Use_K_Of(15) knn.Fit(trainX, trainy) correctPredictions = 0 for row in range(0, 2000): actualClass = testy[row] prediction = knn.Predict(testX[row]) if (actualClass == prediction): correctPredictions = correctPredictions + 1 print(correctPredictions) print((correctPredictions / 2000) * 100)
test2 = CenterData(test2) test3 = CenterData(test3) test4 = CenterData(test4) test5 = CenterData(test5) test6 = CenterData(test6) test7 = CenterData(test7) test8 = CenterData(test8) test9 = CenterData(test9) test0 = CenterData(test0) trainX, trainY = ReshapeData(train1, train2, train3, train4, train5, train6, train7, train8, train9, train0) testX, testY = ReshapeData(test1, test2, test3, test4, test5, test6, test7, test8, test9, test0) knn = knn.KNN() knn.Use_K_Of(15) knn.Fit(trainX, trainY) correct = 0 for row in range(0, 10000): prediction = int(knn.Predict(testX[row])) answer = int(testY[row]) if prediction == answer: correct += 1 print prediction, answer, correct, '/', row print "accuracy of", (float(correct) / float(10000)) * float(100), '%', "(", correct, "Right )" pickle.dump(knn, open('userData/classifer.p', 'wb'))