import argparse, os parser = argparse.ArgumentParser( description= 'Runs the approximated self similarity join (1NN) algorithm of a given ser of points several times' ) parser.add_argument('input_matrix', type=str, help='The numpy vector storing file') parser.add_argument('output_folder', type=str, help='The directory where the results must be stored') args = parser.parse_args() data = [] for line in open(args.input_matrix, "r"): data.append(line.strip()) k = 1 for c in [1, 2, 3]: for i in range(100): print("running %d experiment" % i) results = knn.sim_join(data, k, c) f = open( os.path.join(args.output_folder, str(k), str(c), "%d.res" % i), "w") for x, nn in results: f.write("%d,%s\n" % (x, str(nn))) f.close()
) parser.add_argument('input_matrix', type=str, help='The numpy vector storing file') parser.add_argument('output_folder', type=str, help='The directory where the results must be stored') parser.add_argument( '--N', dest='iter', type=int, default=1, help='The number of times the experiment must be repeated. 1 by default.') parser.add_argument( '--k', dest='k', type=int, default=10, help='The number of nearest neighbors to retrieve. 10 by default.') args = parser.parse_args() data = np.load(args.input_matrix) for i in range(args.iter): print("running %d experiment" % i) results = knn.sim_join(data, args.k, 2) f = open(os.path.join(args.output_folder, "%d.res" % i), "w") for x, nn in results: f.write("%d,%s\n" % (x, str(nn))) f.close()