Example #1
0
    def __init__(self, inception_location, train_data_location):
        self.inception = InceptionClassifier(inception_location)
        self.train_dict = self.load_images_into_dict(train_data_location)
        features, classes = self.get_features_and_classes_from_dict(
            self.train_dict)

        self.knn = KnnClassifier(features, classes)
Example #2
0
class AiManager:
    THRESHOLD = 0.8
    CLASS_NAMES = ['left', 'right', 'space']
    training = False

    def __init__(self, inception_location, train_data_location):
        self.inception = InceptionClassifier(inception_location)
        self.train_dict = self.load_images_into_dict(train_data_location)
        features, classes = self.get_features_and_classes_from_dict(
            self.train_dict)

        self.knn = KnnClassifier(features, classes)

    def get_features_and_classes_from_dict(self, train_dict):
        classes = []
        image_features = []
        for key in sorted(train_dict.keys()):
            for feature in train_dict[key]:
                image_features.append(feature)
                classes.append(key)

        return image_features, classes

    def load_images_into_dict(self, image_folder):
        train_dict = {'left': [], 'right': [], 'space': []}
        for dir in sorted(os.listdir(image_folder)):
            if os.path.isdir(os.path.join(image_folder, dir)):
                for file in os.listdir(os.path.join(image_folder, dir)):
                    if os.path.isfile(os.path.join(image_folder, dir,
                                                   file)) and 'jpg' in file:
                        print('Calculating features for: {}'.format(
                            os.path.join(image_folder, dir, file)))
                        image = cv2.imread(
                            os.path.join(image_folder, dir, file))
                        image_feature = self.inception.get_features_from_image(
                            image)
                        train_dict.get(dir).append(image_feature)
        return train_dict

    def classify_gesture_on_image(self, image):
        start = time.time()
        image_features = self.inception.get_features_from_image(image)
        predicted_class, probability = self.knn.predict_proba_for_image_features(
            image_features, self.CLASS_NAMES)
        print('Time to analyze frame: {} ms'.format(
            (time.time() - start) * 1000))
        print(predicted_class, probability)
        # if probability >= self.THRESHOLD:
        #     # press(predicted_class)
        #     return predicted_class

        return predicted_class, probability
Example #3
0
File: main.py Project: gshawm/CS450
def main(k, data_set_name=None):
    split_percentage = 0.7

    # Load dataset
    if data_set_name is not None:
        data_set = read_file_into_dataset("C:\\Users\\Grant\\Documents\\School\\Winter 2016\\CS 450\\Prove01\\" + data_set_name)
        data_set = randomize_dataset(data_set)
    else:
        data_set_name = "iris"
        iris = datasets.load_iris()
        data_set = randomize_dataset(iris)

    data_set.data = normalize(data_set.data)
    data_sets    = split_dataset(data_set, split_percentage)
    training_set = data_sets['train']
    testing_set  = data_sets['test']

    # My Classifier
    knnClassifier = KnnClassifier()
    knnClassifier.k = k
    knnClassifier.train(training_set.data, training_set.target, training_set.target_names)
    predictions = knnClassifier.predict(testing_set.data)

    my_accuracy = get_accuracy(predictions, testing_set.target)

    # Better Classifier
    better_classifier = KNeighborsClassifier(n_neighbors=k)
    better_classifier.fit(training_set.data, training_set.target)
    predictions = better_classifier.predict(testing_set.data)

    better_accuary = get_accuracy(predictions, testing_set.target)

    print("My results: " + str(my_accuracy) + "%")
    print("Better results: " + str(better_accuary) + "%")

    results = "k = " + str(k) + "\nMy results: " + str(my_accuracy) + "%\n" + "Better results: " + str(better_accuary) + "%\n"

    write_to_results_file(os.getcwd() + os.sep + ".." + os.sep + str(k) + "-" + data_set_name + "_results.txt", results, k)
Example #4
0
def run_knn_with_k_alpha_kfold(k,
                               alpha,
                               X_train,
                               y_train,
                               cv,
                               seed=0,
                               n_iters=3):
    scoring = {'acc': 'accuracy', 'f1': 'f1_macro'}
    results = {'acc': [], 'f1': [], 'times': []}
    clf = KnnClassifier(k=k, alpha=alpha)
    res = cross_validate(clf,
                         X_train,
                         y_train,
                         cv=cv,
                         scoring=scoring,
                         return_train_score=False,
                         n_jobs=-1)
    results['acc'].append(np.mean(res['test_acc']))
    results['f1'].append(np.mean(res['test_f1']))
    results['times'].append(np.mean(res['score_time']))
    return results
Example #5
0
def run_knn_with_k_alpha(k,
                         alpha,
                         X_train,
                         y_train,
                         cv_k=5,
                         seed=0,
                         n_iters=3):
    scoring = {'acc': 'accuracy', 'f1': 'f1_macro'}
    results = {'acc': [], 'f1': [], 'times': []}
    clf = KnnClassifier(k=k, alpha=alpha)
    cv = StratifiedKFold(n_splits=cv_k, random_state=seed)
    cv = list(cv.split(X_train, y_train))[:n_iters]
    res = cross_validate(clf,
                         X_train,
                         y_train,
                         cv=cv,
                         scoring=scoring,
                         return_train_score=False,
                         n_jobs=-1)
    results['acc'].append(np.mean(res['test_acc']))
    results['f1'].append(np.mean(res['test_f1']))
    results['times'].append(np.mean(res['score_time']))
    return results
Example #6
0
def main(k, data_set_name=None):
    split_percentage = 0.7

    # Load dataset
    if data_set_name is not None:
        data_set = read_file_into_dataset(
            "C:\\Users\\Grant\\Documents\\School\\Winter 2016\\CS 450\\Prove01\\"
            + data_set_name)
        data_set = randomize_dataset(data_set)
    else:
        data_set_name = "iris"
        iris = datasets.load_iris()
        data_set = randomize_dataset(iris)

    data_set.data = normalize(data_set.data)
    data_sets = split_dataset(data_set, split_percentage)
    training_set = data_sets['train']
    testing_set = data_sets['test']

    # My Classifier
    knnClassifier = KnnClassifier()
    knnClassifier.k = k
    knnClassifier.train(training_set.data, training_set.target,
                        training_set.target_names)
    predictions = knnClassifier.predict(testing_set.data)

    my_accuracy = get_accuracy(predictions, testing_set.target)

    # Better Classifier
    better_classifier = KNeighborsClassifier(n_neighbors=k)
    better_classifier.fit(training_set.data, training_set.target)
    predictions = better_classifier.predict(testing_set.data)

    better_accuary = get_accuracy(predictions, testing_set.target)

    print("My results: " + str(my_accuracy) + "%")
    print("Better results: " + str(better_accuary) + "%")

    results = "k = " + str(k) + "\nMy results: " + str(
        my_accuracy) + "%\n" + "Better results: " + str(better_accuary) + "%\n"

    write_to_results_file(
        os.getcwd() + os.sep + ".." + os.sep + str(k) + "-" + data_set_name +
        "_results.txt", results, k)
Example #7
0
def crossval_incrementing_k(X,
                            y,
                            k_range,
                            alpha,
                            cv_k,
                            seed=0,
                            n_iters=3,
                            with_pca=True,
                            quiet=True,
                            times=1):
    # n_iters es la cantidad de iteraciones que se realizan de kfold.
    scoring = {'acc': 'accuracy', 'f1': 'f1_macro'}
    results = {'acc': [], 'f1': [], 'times': []}

    for k in k_range:
        clf = KnnClassifier(k=k, alpha=alpha, with_pca=with_pca, quiet=quiet)
        cv = StratifiedKFold(n_splits=cv_k, random_state=seed)
        cv = list(cv.split(X, y))[:n_iters]

        res_times = []
        for _ in range(times):
            res = cross_validate(clf,
                                 X,
                                 y,
                                 cv=cv,
                                 scoring=scoring,
                                 return_train_score=False,
                                 n_jobs=-1)
            res_times.append(np.mean(res['score_time']))

        results['acc'].append(np.mean(res['test_acc']))
        results['f1'].append(np.mean(res['test_f1']))
        results['times'].append(np.mean(res_times))
        print(k)

    return results
from knn_classifier import KnnClassifier
from cross_validation import CrossValidation
from preprocessor import Preprocessor
from hybrid_classifier import HybridClassifier
from rna_module import RnaModule
from knn_module import KnnModule
from evaluate_module import EvaluateModule
from dataSet import DataSet

dts = DataSet()
dts.setFilePath("bases/sub_bases/")

#CONFIGURACAO DO KNN
knn = KnnModule()
knn.setKNeighbors(1)
knn_classifier = KnnClassifier()
knn_classifier.setKnn(knn)

#PREPROCESSADOR PARA ATRIBUTOS CATEGORICOS
preprocessor = Preprocessor()
preprocessor.setColumnsCategory(['protocol_type', 'service', 'flag'])

evaluate = EvaluateModule()

cross = CrossValidation()

#DEFINIR A ITERACAO QUE O CROSS VALIDATION ESTA
cross.setIteration(1)

cross.setPreprocessor(preprocessor)
Example #9
0
                        df.columns[i]].quantile(0.25) != 1:
            index.append(i)

    features = df[df.columns[index]]
    labels = df[df.columns[len(df.columns) - 1]]

    # Replacing alphabets to numbers for ease of use
    labels = labels.replace('A', 1).replace('B', 2).replace('C', 3).replace(
        'D', 4).replace('E', 5)

    X = features.values
    y = labels.values

    X_train, X_test, Y_train, Y_test = train_test_split(features.values,
                                                        labels.values,
                                                        test_size=0.2)

    # Running knn classifier on the dataset
    start = timeit.default_timer()
    knnClf = KnnClassifier(X_train, Y_train)
    predictions = knnClf.predict(X_test=X_test, k=41)
    stop = timeit.default_timer()

    print("Run Time: ", stop - start)

    # transform the list into an array
    predictions = np.asarray(predictions)
    # evaluating accuracy
    accuracy = accuracy_score(Y_test[0:100], predictions)
    print('\nThe accuracy of our classifier is %d%%' % accuracy)
    args = parser.parse_args()

    classifier = InceptionClassifier(args.model)

    train_dict = {'left': [], 'right': [], 'space': []}

    threshold = 0.8
    class_names = ['left', 'right', 'space']
    training = False

    safe_thread = None

    features, classes = load_images_from_folder(args.folder)

    knn = KnnClassifier(features, classes)

    vs = WebcamStream(0)
    vs.start()

    classify_thread = threading.Thread(target=classify_stream)
    classify_thread.daemon = True
    classify_thread.start()

    root = Tk()
    root.bind('<Escape>', lambda e: stop())
    panel = None
    label = Label(root, text="Click the buttons to start and stop recording gestures.")
    label.grid(row=0, columnspan=4)
    lbl = Label(root, text="Gestures to go left")
    lbl.grid(row=1, column=1, columnspan=2)