Example #1
0
def decode_SDD(r, param):
    code = komm.HammingCode(param['n'] - param['k'])
    #mod = komm.PAModulation(2)
    #b = mod.demodulate(r)
    u_hat = code.decode(r, method='exhaustive_search_soft')

    return u_hat
Example #2
0
    def hamming_decode(self, encoded_parts, parameter):
        """Decoding method for Hamming code
            """
        code = komm.HammingCode(parameter)
        decoded_parts = []
        for i in range(0, len(encoded_parts)):
            decoded_part = code.decode(encoded_parts[i])
            decoded_parts.append(decoded_part)

        decoded_parts = np.array(decoded_parts)
        decoded_parts = np.concatenate(decoded_parts)
        if (len(self.image_bits) % code.dimension != 0):
            for i in range(0,
                           self.calculate_zeros_addition_Hamming(parameter)):
                decoded_parts = np.delete(decoded_parts,
                                          len(decoded_parts) - 1)

        return decoded_parts
Example #3
0
class TestHammingCode:
    code = komm.HammingCode(3)

    def test_parameters(self):
        n, k, d = self.code.length, self.code.dimension, self.code.minimum_distance
        assert (n, k, d) == (7, 4, 3)

    def test_weight_distributions(self):
        assert np.array_equal(self.code.codeword_weight_distribution,
                              [1, 0, 0, 7, 7, 0, 0, 1])
        assert np.array_equal(self.code.coset_leader_weight_distribution,
                              [1, 7, 0, 0, 0, 0, 0, 0])

    def test_GH_orthogonality(self):
        k, m = self.code.dimension, self.code.redundancy
        G = self.code.generator_matrix
        H = self.code.parity_check_matrix
        assert np.array_equal(
            np.dot(G, H.T) % 2, np.zeros((k, m), dtype=np.int))

    def test_encoding(self):
        assert np.array_equal(self.code.encode([1, 0, 0, 1]),
                              [1, 0, 0, 1, 0, 0, 1])
        assert np.array_equal(self.code.encode([1, 0, 1, 1]),
                              [1, 0, 1, 1, 0, 1, 0])
        assert np.array_equal(self.code.encode([1, 1, 1, 1]),
                              [1, 1, 1, 1, 1, 1, 1])

    def test_codewords(self):
        n, k = self.code.length, self.code.dimension
        codewords = self.code.codeword_table
        assert codewords.shape == (2**k, n)

    def test_decoding(self):
        assert np.array_equal(self.code.decode([1, 1, 1, 1, 1, 1, 1]),
                              [1, 1, 1, 1])
        assert np.array_equal(self.code.decode([1, 1, 1, 1, 1, 1, 0]),
                              [1, 1, 1, 1])
        assert np.array_equal(self.code.decode([1, 0, 1, 1, 1, 1, 0]),
                              [1, 0, 1, 1])
Example #4
0
    def hamming_encode(self, parameter):
        """ Hamming code encoding method for image pixels
        """

        bits = np.array(self.image_bits)
        code = komm.HammingCode(parameter)

        if (len(bits) % code.dimension > 0):

            bits = np.append(bits, [
                np.zeros(self.calculate_zeros_addition_Hamming(parameter),
                         dtype=np.uint8)
            ])
            number_of_arrays = int(len(bits) / code.dimension)
            parts_to_encode = np.reshape(bits, (number_of_arrays, -1),
                                         order='C')

            encoded_parts = []
            for i in range(0, len(parts_to_encode)):
                encoded_part = code.encode(parts_to_encode[i])
                encoded_parts.append(encoded_part)
            encoded_parts = np.array(encoded_parts)

            return encoded_parts

        elif (len(bits) % code.dimension == 0):
            number_of_arrays = int(len(bits) / code.dimension)
            parts_to_encode = np.reshape(bits, (number_of_arrays, -1),
                                         order='C')

            encoded_parts = []
            for i in range(0, len(parts_to_encode)):
                encoded_part = code.encode(parts_to_encode[i])
                encoded_parts.append(encoded_part)
            encoded_parts = np.array(encoded_parts)

            return encoded_parts
Example #5
0
 def calculate_zeros_addition_Hamming(self, parameter):
     bits = np.array(self.image_bits)
     code = komm.HammingCode(parameter)
     additional_zeros = (int(len(bits) / code.dimension + 1) *
                         code.dimension) - len(bits)
     return additional_zeros
Example #6
0
# coding: utf-8

import numpy as np
import sindrome
import komm
import matplotlib.pyplot as plt

N_cw = 100000 
code = komm.HammingCode(3) 
EbN0_list = np.arange(-1.0, 8.0, step = 1.0) 

k = code.dimension
n = code.length
R = code.rate
u = np.random.randint(2, size = k*N_cw)

u_reshaped = np.reshape(u,newshape = (N_cw,k))
c_reshaped = np.apply_along_axis(code.encode, axis = 1, arr = u_reshaped)

c = np.reshape(c_reshaped, newshape = (n*N_cw,)) 
mod = komm.PAModulation(2)
s = mod.modulate(c)
Pb = []
for EbN0 in EbN0_list:
    EbN0_linear = 10**(EbN0/10)
    Eb = np.linalg.norm(s)**2 #Eb = total de energia transmitida (cada elem. ao quadrado somado, que dá 700000)/ número de bits de informação (400000)
    N0 = Eb/EbN0_linear
    w = np.random.randn(n*N_cw) * np.sqrt(N0/2) #vetor gaussiano com média zero e variância 1, multiplica pela raiz da variância do canal awgn (N0) para mudar a variância 1
    r = s + w
    b = mod.demodulate(r)
    b_reshaped = np.reshape(b, newshape = (N_cw, n))
Example #7
0
def decode_HDD(b, param):

    code = komm.HammingCode(param['n'] - param['k'])
    u_hat = code.decode(b, method='exhaustive_search_hard')

    return u_hat