def test_server_start(): input_names = [ "IteratorGetNext:0", "IteratorGetNext:1", "IteratorGetNext:4" ] output_names = ["loss/Softmax"] port = random.randint(1000, 65535) parallel_inference_config = ParallelInferenceConfig(workers=1) serving_config = ServingConfig( http_port=port, input_data_format="NUMPY", output_data_format="NUMPY", log_timings=True, ) tensorflow_config = TensorFlowConfig( model_config_type=ModelConfigType( model_type="TENSORFLOW", model_loading_path="bert_mrpc_frozen.pb"), tensor_data_types_config=TensorDataTypesConfig( input_data_types={ "IteratorGetNext:0": "INT32", "IteratorGetNext:1": "INT32", "IteratorGetNext:4": "INT32", }), ) model_pipeline_step = ModelStep( model_config=tensorflow_config, parallel_inference_config=parallel_inference_config, input_names=input_names, output_names=output_names, ) inference = InferenceConfiguration(serving_config=serving_config, steps=[model_pipeline_step]) server = Server(inference_config=inference, extra_start_args="-Xmx8g", jar_path="konduit.jar") server.start() client = Client(input_data_format="NUMPY", prediction_type="NUMPY", port=port) data_input = { "IteratorGetNext:0": np.load("../data/input-0.npy"), "IteratorGetNext:1": np.load("../data/input-1.npy"), "IteratorGetNext:4": np.load("../data/input-4.npy"), } assert is_port_in_use(port) try: predicted = client.predict(data_input) print(predicted) server.stop() except Exception as e: print(e) server.stop()