def test_python_script_prediction(): work_dir = os.path.abspath(".") python_config = PythonConfig( python_path=default_python_path(work_dir), python_code_path=os.path.join(work_dir, "simple.py"), python_inputs={"first": "NDARRAY"}, python_outputs={"second": "NDARRAY"}, ) step = PythonStep().step(python_config) server = Server(steps=step, serving_config=ServingConfig()) _, port, started = server.start() assert started assert is_port_in_use(port) client = Client(port=port) try: input_array = np.load("../data/input-0.npy") predicted = client.predict(input_array) print(predicted) server.stop() except Exception as e: print(e) server.stop()
def test_python_script_prediction(): port = 1337 serving_config = ServingConfig(http_port=port) work_dir = os.path.abspath(".") python_config = PythonConfig( python_path=default_python_path(work_dir), python_code_path=os.path.join(work_dir, "simple.py"), python_inputs={"first": "NDARRAY"}, python_outputs={"second": "NDARRAY"}, ) step = PythonStep().step(python_config) server = Server(steps=step, serving_config=serving_config) server.start() client = Client(port=port) if is_port_in_use(port): input_array = np.load("../data/input-0.npy") predicted = client.predict(input_array) print(predicted) server.stop() else: server.stop() raise Exception("Server not running on specified port")
import cv2 import os from konduit import * from konduit.server import Server from konduit.utils import default_python_path # Set the working directory to this folder and register # the "detect_image.py" script as code to be executed by konduit. work_dir = os.path.abspath(".") python_config = PythonConfig( python_path=default_python_path(work_dir), python_code_path=os.path.join(work_dir, "detect_image.py"), python_inputs={"image": "NDARRAY"}, python_outputs={"num_boxes": "NDARRAY"}, ) # Configure a Python pipeline step for your Python code. Internally, konduit will take numpy arrays as input and # return data in JSON format. Note that the Python variable 'image' and the Konduit step name 'image_data' are separate # things here. step_input_name = "image_data" python_pipeline_step = PythonStep().step(python_config, input_name=step_input_name) serving_config = ServingConfig(http_port=1337, output_data_format="JSON") # Start a konduit server and wait for it to start server = Server(serving_config=serving_config, steps=[python_pipeline_step]) server.start() client = Client(port="1337", timeout=30) encoded_image = cv2.cvtColor(