Example #1
0
    def apply_transform(
        self, input: Tensor, params: Dict[str, Tensor], transform: Optional[Tensor] = None
    ) -> Tensor:

        transforms = [
            lambda img: adjust_brightness(img, params["brightness_factor"] - 1),
            lambda img: adjust_contrast(img, params["contrast_factor"]),
            lambda img: adjust_saturation(img, params["saturation_factor"]),
            lambda img: adjust_hue(img, params["hue_factor"] * 2 * pi),
        ]

        jittered = input
        for idx in params["order"].tolist():
            t = transforms[idx]
            jittered = t(jittered)

        return jittered
Example #2
0
def apply_adjust_brightness(input: torch.Tensor, params: Dict[str, torch.Tensor]) -> torch.Tensor:
    """Apply brightness adjustment.

    Wrapper for adjust_brightness for Torchvision-like param settings.

    Args:
        input (torch.Tensor): Tensor to be transformed with shape :math:`(*, C, H, W)`.
        params (Dict[str, torch.Tensor]):
            - params['brightness_factor']: Brightness adjust factor per element
              in the batch. 0 gives a black image, 1 does not modify the input image and 2 gives a
              white image, while any other number modify the brightness.

    Returns:
        torch.Tensor: Adjusted image with shape :math:`(B, C, H, W)`.
    """
    transformed = adjust_brightness(input, params['brightness_factor'].to(input.dtype) - 1)

    return transformed
Example #3
0
def apply_adjust_brightness(input: torch.Tensor, params: Dict[str, torch.Tensor]) -> torch.Tensor:
    """ Wrapper for adjust_brightness for Torchvision-like param settings.

    Args:
        input (torch.Tensor): Tensor to be transformed with shape (H, W), (C, H, W), (B, C, H, W).
        params (Dict[str, torch.Tensor]):
            - params['brightness_factor']: Brightness adjust factor per element
              in the batch. 0 gives a black image, 1 does not modify the input image and 2 gives a
              white image, while any other number modify the brightness.

    Returns:
        torch.Tensor: Adjusted image.
    """
    input = _transform_input(input)
    _validate_input_dtype(input, accepted_dtypes=[torch.float16, torch.float32, torch.float64])

    transformed = adjust_brightness(input, params['brightness_factor'].to(input.dtype) - 1)

    return transformed
Example #4
0
def brightness(x: Tensor, v: float) -> Tensor:
    return E.adjust_brightness(x, v)