def apply_transform( self, input: Tensor, params: Dict[str, Tensor], transform: Optional[Tensor] = None ) -> Tensor: transforms = [ lambda img: adjust_brightness(img, params["brightness_factor"] - 1), lambda img: adjust_contrast(img, params["contrast_factor"]), lambda img: adjust_saturation(img, params["saturation_factor"]), lambda img: adjust_hue(img, params["hue_factor"] * 2 * pi), ] jittered = input for idx in params["order"].tolist(): t = transforms[idx] jittered = t(jittered) return jittered
def apply_adjust_brightness(input: torch.Tensor, params: Dict[str, torch.Tensor]) -> torch.Tensor: """Apply brightness adjustment. Wrapper for adjust_brightness for Torchvision-like param settings. Args: input (torch.Tensor): Tensor to be transformed with shape :math:`(*, C, H, W)`. params (Dict[str, torch.Tensor]): - params['brightness_factor']: Brightness adjust factor per element in the batch. 0 gives a black image, 1 does not modify the input image and 2 gives a white image, while any other number modify the brightness. Returns: torch.Tensor: Adjusted image with shape :math:`(B, C, H, W)`. """ transformed = adjust_brightness(input, params['brightness_factor'].to(input.dtype) - 1) return transformed
def apply_adjust_brightness(input: torch.Tensor, params: Dict[str, torch.Tensor]) -> torch.Tensor: """ Wrapper for adjust_brightness for Torchvision-like param settings. Args: input (torch.Tensor): Tensor to be transformed with shape (H, W), (C, H, W), (B, C, H, W). params (Dict[str, torch.Tensor]): - params['brightness_factor']: Brightness adjust factor per element in the batch. 0 gives a black image, 1 does not modify the input image and 2 gives a white image, while any other number modify the brightness. Returns: torch.Tensor: Adjusted image. """ input = _transform_input(input) _validate_input_dtype(input, accepted_dtypes=[torch.float16, torch.float32, torch.float64]) transformed = adjust_brightness(input, params['brightness_factor'].to(input.dtype) - 1) return transformed
def brightness(x: Tensor, v: float) -> Tensor: return E.adjust_brightness(x, v)