Example #1
0
    def test_exception(self, device, dtype):
        with pytest.raises(TypeError):
            assert elastic_transform2d([0.])

        with pytest.raises(TypeError):
            assert elastic_transform2d(torch.tensor(), 1)

        with pytest.raises(ValueError):
            img = torch.ones(1, 1, 1, device=device, dtype=dtype)
            noise = torch.ones(1, 2, 1, 1, device=device, dtype=dtype)
            assert elastic_transform2d(img, noise)

        with pytest.raises(ValueError):
            img = torch.ones(1, 1, 1, 1, device=device, dtype=dtype)
            noise = torch.ones(1, 3, 1, 1, device=device, dtype=dtype)
            assert elastic_transform2d(img, noise)
Example #2
0
 def test_cardinality(self, device, dtype, batch, channels, height, width):
     shape = batch, channels, height, width
     img = torch.ones(shape, device=device, dtype=dtype)
     noise = torch.ones((batch, 2, height, width),
                        device=device,
                        dtype=dtype)
     assert elastic_transform2d(img, noise).shape == shape
Example #3
0
 def inner(x):
     a = np.random.rand(2)
     k = np.random.randint(8,64) * 2 + 1 # 63
     s = k / (np.random.rand()+2.) # 2-3 times less than k
     # s = float(np.random.randint(8,64)) # 32
     noise = torch.zeros([1, 2, x.shape[2], x.shape[3]]).cuda()
     return K.elastic_transform2d(x, noise, (k,k), (s,s), tuple(a))
Example #4
0
 def test_valid_paramters(self, device, dtype, kernel_size, sigma, alpha):
     image = torch.rand(1, 4, 5, 5, device=device, dtype=dtype)
     noise = torch.rand(1, 2, 5, 5, device=device, dtype=dtype)
     if isinstance(sigma, torch.Tensor):
         sigma = sigma.to(device, dtype)
     if isinstance(alpha, torch.Tensor):
         alpha = alpha.to(device, dtype)
     assert elastic_transform2d(image, noise, kernel_size, sigma,
                                alpha) is not None
Example #5
0
 def apply_transform(self,
                     input: Tensor,
                     params: Dict[str, Tensor],
                     transform: Optional[Tensor] = None) -> Tensor:
     return elastic_transform2d(
         input,
         params["noise"].to(input),
         self.flags["kernel_size"],
         self.flags["sigma"],
         self.flags["alpha"],
         self.flags["align_corners"],
         self.flags["mode"],
         self.flags["padding_mode"],
     )
Example #6
0
    def test_values(self, device, dtype):
        image = torch.tensor(
            [[[[0.0018, 0.7521, 0.7550], [0.2053, 0.4249, 0.1369],
               [0.1027, 0.3992, 0.8773]]]],
            device=device,
            dtype=dtype)

        noise = torch.ones(1, 2, 3, 3, device=device, dtype=dtype)

        expected = torch.tensor(
            [[[[0.2193, 0.2193, 0.2193], [0.2193, 0.2193, 0.2193],
               [0.2193, 0.2193, 0.2193]]]],
            device=device,
            dtype=dtype)

        actual = elastic_transform2d(image, noise)
        assert_allclose(actual, expected, atol=1e-3, rtol=1e-3)
Example #7
0
 def test_smoke(self, device, dtype):
     image = torch.rand(1, 4, 5, 5, device=device, dtype=dtype)
     noise = torch.rand(1, 2, 5, 5, device=device, dtype=dtype)
     assert elastic_transform2d(image, noise) is not None