Example #1
0
    def test_homography_warper(self, batch_size, device, dtype):
        # generate input data
        height, width = 128, 64
        eye_size = 3  # identity 3x3

        patch_src = torch.ones(batch_size,
                               1,
                               height,
                               width,
                               device=device,
                               dtype=dtype)

        # create base homography
        dst_homo_src = utils.create_eye_batch(batch_size,
                                              eye_size,
                                              device=device,
                                              dtype=dtype)

        # instantiate warper
        warper = kornia.geometry.transform.HomographyWarper(height,
                                                            width,
                                                            align_corners=True)

        for _ in range(self.num_tests):
            # generate homography noise
            homo_delta = torch.rand_like(dst_homo_src) * 0.3

            dst_homo_src_i = dst_homo_src + homo_delta

            # transform the points from dst to ref
            patch_dst = warper(patch_src, dst_homo_src_i)
            patch_dst_to_src = warper(patch_dst,
                                      _torch_inverse_cast(dst_homo_src_i))

            # same transform precomputing the grid
            warper.precompute_warp_grid(_torch_inverse_cast(dst_homo_src_i))
            patch_dst_to_src_precomputed = warper(patch_dst)
            assert_close(patch_dst_to_src_precomputed,
                         patch_dst_to_src,
                         atol=1e-4,
                         rtol=1e-4)

            # projected should be equal as initial
            error = utils.compute_patch_error(patch_src, patch_dst_to_src,
                                              height, width)

            assert error.item() < self.threshold

            # check functional api
            patch_dst_to_src_functional = kornia.geometry.transform.homography_warp(
                patch_dst,
                _torch_inverse_cast(dst_homo_src_i), (height, width),
                align_corners=True)

            assert_close(patch_dst_to_src,
                         patch_dst_to_src_functional,
                         atol=1e-4,
                         rtol=1e-4)
Example #2
0
def normalize_homography3d(
    dst_pix_trans_src_pix: torch.Tensor, dsize_src: Tuple[int, int, int], dsize_dst: Tuple[int, int, int]
) -> torch.Tensor:
    r"""Normalize a given homography in pixels to [-1, 1].

    Args:
        dst_pix_trans_src_pix: homography/ies from source to destination to be
          normalized. :math:`(B, 4, 4)`
        dsize_src: size of the source image (depth, height, width).
        dsize_src: size of the destination image (depth, height, width).

    Returns:
        the normalized homography.

    Shape:
        Output: :math:`(B, 4, 4)`
    """
    if not isinstance(dst_pix_trans_src_pix, torch.Tensor):
        raise TypeError(f"Input type is not a torch.Tensor. Got {type(dst_pix_trans_src_pix)}")

    if not (len(dst_pix_trans_src_pix.shape) == 3 or dst_pix_trans_src_pix.shape[-2:] == (4, 4)):
        raise ValueError(f"Input dst_pix_trans_src_pix must be a Bx3x3 tensor. Got {dst_pix_trans_src_pix.shape}")

    # source and destination sizes
    src_d, src_h, src_w = dsize_src
    dst_d, dst_h, dst_w = dsize_dst
    # compute the transformation pixel/norm for src/dst
    src_norm_trans_src_pix: torch.Tensor = normal_transform_pixel3d(src_d, src_h, src_w).to(dst_pix_trans_src_pix)

    src_pix_trans_src_norm = _torch_inverse_cast(src_norm_trans_src_pix)
    dst_norm_trans_dst_pix: torch.Tensor = normal_transform_pixel3d(dst_d, dst_h, dst_w).to(dst_pix_trans_src_pix)
    # compute chain transformations
    dst_norm_trans_src_norm: torch.Tensor = dst_norm_trans_dst_pix @ (dst_pix_trans_src_pix @ src_pix_trans_src_norm)
    return dst_norm_trans_src_norm
Example #3
0
def denormalize_homography(
    dst_pix_trans_src_pix: torch.Tensor, dsize_src: Tuple[int, int], dsize_dst: Tuple[int, int]
) -> torch.Tensor:
    r"""De-normalize a given homography in pixels from [-1, 1] to actual height and width.

    Args:
        dst_pix_trans_src_pix: homography/ies from source to destination to be
          denormalized. :math:`(B, 3, 3)`
        dsize_src: size of the source image (height, width).
        dsize_dst: size of the destination image (height, width).

    Returns:
        the denormalized homography of shape :math:`(B, 3, 3)`.
    """
    if not isinstance(dst_pix_trans_src_pix, torch.Tensor):
        raise TypeError(f"Input type is not a torch.Tensor. Got {type(dst_pix_trans_src_pix)}")

    if not (len(dst_pix_trans_src_pix.shape) == 3 or dst_pix_trans_src_pix.shape[-2:] == (3, 3)):
        raise ValueError(f"Input dst_pix_trans_src_pix must be a Bx3x3 tensor. Got {dst_pix_trans_src_pix.shape}")

    # source and destination sizes
    src_h, src_w = dsize_src
    dst_h, dst_w = dsize_dst

    # compute the transformation pixel/norm for src/dst
    src_norm_trans_src_pix: torch.Tensor = normal_transform_pixel(src_h, src_w).to(dst_pix_trans_src_pix)

    dst_norm_trans_dst_pix: torch.Tensor = normal_transform_pixel(dst_h, dst_w).to(dst_pix_trans_src_pix)
    dst_denorm_trans_dst_pix = _torch_inverse_cast(dst_norm_trans_dst_pix)
    # compute chain transformations
    dst_norm_trans_src_norm: torch.Tensor = dst_denorm_trans_dst_pix @ (dst_pix_trans_src_pix @ src_norm_trans_src_pix)
    return dst_norm_trans_src_norm
Example #4
0
def normalize_homography(
    dst_pix_trans_src_pix: torch.Tensor, dsize_src: Tuple[int, int], dsize_dst: Tuple[int, int]
) -> torch.Tensor:
    r"""Normalize a given homography in pixels to [-1, 1].

    Args:
        dst_pix_trans_src_pix (torch.Tensor): homography/ies from source to destination to be
          normalized. :math:`(B, 3, 3)`
        dsize_src (tuple): size of the source image (height, width).
        dsize_dst (tuple): size of the destination image (height, width).

    Returns:
        torch.Tensor: the normalized homography of shape :math:`(B, 3, 3)`.
    """
    check_is_tensor(dst_pix_trans_src_pix)

    if not (len(dst_pix_trans_src_pix.shape) == 3 or dst_pix_trans_src_pix.shape[-2:] == (3, 3)):
        raise ValueError(
            "Input dst_pix_trans_src_pix must be a Bx3x3 tensor. Got {}".format(dst_pix_trans_src_pix.shape)
        )

    # source and destination sizes
    src_h, src_w = dsize_src
    dst_h, dst_w = dsize_dst

    # compute the transformation pixel/norm for src/dst
    src_norm_trans_src_pix: torch.Tensor = normal_transform_pixel(src_h, src_w).to(dst_pix_trans_src_pix)

    src_pix_trans_src_norm = _torch_inverse_cast(src_norm_trans_src_pix)
    dst_norm_trans_dst_pix: torch.Tensor = normal_transform_pixel(dst_h, dst_w).to(dst_pix_trans_src_pix)

    # compute chain transformations
    dst_norm_trans_src_norm: torch.Tensor = dst_norm_trans_dst_pix @ (dst_pix_trans_src_pix @ src_pix_trans_src_norm)
    return dst_norm_trans_src_norm
Example #5
0
def warp_affine3d(
    src: torch.Tensor,
    M: torch.Tensor,
    dsize: Tuple[int, int, int],
    flags: str = 'bilinear',
    padding_mode: str = 'zeros',
    align_corners: bool = True,
) -> torch.Tensor:
    r"""Apply a projective transformation a to 3d tensor.

    .. warning::
        This API signature it is experimental and might suffer some changes in the future.

    Args:
        src : input tensor of shape :math:`(B, C, D, H, W)`.
        M: projective transformation matrix of shape :math:`(B, 3, 4)`.
        dsize: size of the output image (depth, height, width).
        mode: interpolation mode to calculate output values
          ``'bilinear'`` | ``'nearest'``.
        padding_mode: padding mode for outside grid values
          ``'zeros'`` | ``'border'`` | ``'reflection'``.
        align_corners : mode for grid_generation.

    Returns:
        torch.Tensor: the warped 3d tensor with shape :math:`(B, C, D, H, W)`.

    .. note::
        This function is often used in conjunction with :func:`get_perspective_transform3d`.
    """
    if len(src.shape) != 5:
        raise AssertionError(src.shape)
    if not (len(M.shape) == 3 and M.shape[-2:] == (3, 4)):
        raise AssertionError(M.shape)
    if len(dsize) != 3:
        raise AssertionError(dsize)
    B, C, D, H, W = src.size()

    size_src: Tuple[int, int, int] = (D, H, W)
    size_out: Tuple[int, int, int] = dsize

    M_4x4 = convert_affinematrix_to_homography3d(M)  # Bx4x4

    # we need to normalize the transformation since grid sample needs -1/1 coordinates
    dst_norm_trans_src_norm: torch.Tensor = normalize_homography3d(
        M_4x4, size_src, size_out)  # Bx4x4

    src_norm_trans_dst_norm = _torch_inverse_cast(dst_norm_trans_src_norm)
    P_norm: torch.Tensor = src_norm_trans_dst_norm[:, :3]  # Bx3x4

    # compute meshgrid and apply to input
    dsize_out: List[int] = [B, C] + list(size_out)
    grid = torch.nn.functional.affine_grid(P_norm,
                                           dsize_out,
                                           align_corners=align_corners)
    return torch.nn.functional.grid_sample(src,
                                           grid,
                                           align_corners=align_corners,
                                           mode=flags,
                                           padding_mode=padding_mode)
Example #6
0
    def test_values(self, device, dtype):
        x = torch.tensor([[4.0, 7.0], [2.0, 6.0]], device=device, dtype=dtype)

        y_expected = torch.tensor([[0.6, -0.7], [-0.2, 0.4]], device=device, dtype=dtype)

        y = _torch_inverse_cast(x)

        assert_close(y, y_expected)
Example #7
0
def get_projective_transform(center: torch.Tensor, angles: torch.Tensor,
                             scales: torch.Tensor) -> torch.Tensor:
    r"""Calculate the projection matrix for a 3D rotation.

    .. warning::
        This API signature it is experimental and might suffer some changes in the future.

    The function computes the projection matrix given the center and angles per axis.

    Args:
        center: center of the rotation (x,y,z) in the source with shape :math:`(B, 3)`.
        angles: angle axis vector containing the rotation angles in degrees in the form
            of (rx, ry, rz) with shape :math:`(B, 3)`. Internally it calls Rodrigues to compute
            the rotation matrix from axis-angle.
        scales: scale factor for x-y-z-directions with shape :math:`(B, 3)`.

    Returns:
        the projection matrix of 3D rotation with shape :math:`(B, 3, 4)`.

    .. note::
        This function is often used in conjunction with :func:`warp_affine3d`.
    """
    if not (len(center.shape) == 2 and center.shape[-1] == 3):
        raise AssertionError(center.shape)
    if not (len(angles.shape) == 2 and angles.shape[-1] == 3):
        raise AssertionError(angles.shape)
    if center.device != angles.device:
        raise AssertionError(center.device, angles.device)
    if center.dtype != angles.dtype:
        raise AssertionError(center.dtype, angles.dtype)

    # create rotation matrix
    angle_axis_rad: torch.Tensor = K.deg2rad(angles)
    rmat: torch.Tensor = K.angle_axis_to_rotation_matrix(
        angle_axis_rad)  # Bx3x3
    scaling_matrix: torch.Tensor = K.eye_like(3, rmat)
    scaling_matrix = scaling_matrix * scales.unsqueeze(dim=1)
    rmat = rmat @ scaling_matrix.to(rmat)

    # define matrix to move forth and back to origin
    from_origin_mat = torch.eye(4)[None].repeat(rmat.shape[0], 1,
                                                1).type_as(center)  # Bx4x4
    from_origin_mat[..., :3, -1] += center

    to_origin_mat = from_origin_mat.clone()
    to_origin_mat = _torch_inverse_cast(from_origin_mat)

    # append translation with zeros
    proj_mat = projection_from_Rt(rmat,
                                  torch.zeros_like(center)[..., None])  # Bx3x4

    # chain 4x4 transforms
    proj_mat = convert_affinematrix_to_homography3d(proj_mat)  # Bx4x4
    proj_mat = from_origin_mat @ proj_mat @ to_origin_mat

    return proj_mat[..., :3, :]  # Bx3x4
Example #8
0
 def compute_inverse_transformation(self, transform: torch.Tensor):
     """Compute the inverse transform of given transformation matrices."""
     return _torch_inverse_cast(transform)
Example #9
0
 def test_smoke(self, device, dtype, input_shape):
     x = torch.rand(input_shape, device=device, dtype=dtype)
     y = _torch_inverse_cast(x)
     assert y.shape == x.shape
Example #10
0
def warp_perspective(
    src: torch.Tensor,
    M: torch.Tensor,
    dsize: Tuple[int, int],
    mode: str = 'bilinear',
    padding_mode: str = 'zeros',
    align_corners: Optional[bool] = None,
) -> torch.Tensor:
    r"""Applies a perspective transformation to an image.

    .. image:: https://kornia-tutorials.readthedocs.io/en/latest/_images/warp_perspective_10_2.png

    The function warp_perspective transforms the source image using
    the specified matrix:

    .. math::
        \text{dst} (x, y) = \text{src} \left(
        \frac{M^{-1}_{11} x + M^{-1}_{12} y + M^{-1}_{13}}{M^{-1}_{31} x + M^{-1}_{32} y + M^{-1}_{33}} ,
        \frac{M^{-1}_{21} x + M^{-1}_{22} y + M^{-1}_{23}}{M^{-1}_{31} x + M^{-1}_{32} y + M^{-1}_{33}}
        \right )

    Args:
        src: input image with shape :math:`(B, C, H, W)`.
        M: transformation matrix with shape :math:`(B, 3, 3)`.
        dsize: size of the output image (height, width).
        mode: interpolation mode to calculate output values ``'bilinear'`` | ``'nearest'``.
        padding_mode: padding mode for outside grid values ``'zeros'`` | ``'border'`` | ``'reflection'``.
        align_corners(bool, optional): interpolation flag.

    Returns:
        the warped input image :math:`(B, C, H, W)`.

    Example:
       >>> img = torch.rand(1, 4, 5, 6)
       >>> H = torch.eye(3)[None]
       >>> out = warp_perspective(img, H, (4, 2), align_corners=True)
       >>> print(out.shape)
       torch.Size([1, 4, 4, 2])

    .. note::
        This function is often used in conjuntion with :func:`get_perspective_transform`.

    .. note::
        See a working example `here <https://kornia-tutorials.readthedocs.io/en/
        latest/warp_perspective.html>`_.
    """
    if not isinstance(src, torch.Tensor):
        raise TypeError("Input src type is not a torch.Tensor. Got {}".format(
            type(src)))

    if not isinstance(M, torch.Tensor):
        raise TypeError("Input M type is not a torch.Tensor. Got {}".format(
            type(M)))

    if not len(src.shape) == 4:
        raise ValueError("Input src must be a BxCxHxW tensor. Got {}".format(
            src.shape))

    if not (len(M.shape) == 3 and M.shape[-2:] == (3, 3)):
        raise ValueError("Input M must be a Bx3x3 tensor. Got {}".format(
            M.shape))

    # TODO: remove the statement below in kornia v0.6
    if align_corners is None:
        message: str = (
            "The align_corners default value has been changed. By default now is set True "
            "in order to match cv2.warpPerspective. In case you want to keep your previous "
            "behaviour set it to False. This warning will disappear in kornia > v0.6."
        )
        warnings.warn(message)
        # set default value for align corners
        align_corners = True

    B, C, H, W = src.size()
    h_out, w_out = dsize

    # we normalize the 3x3 transformation matrix and convert to 3x4
    dst_norm_trans_src_norm: torch.Tensor = normalize_homography(
        M, (H, W), (h_out, w_out))  # Bx3x3

    src_norm_trans_dst_norm = _torch_inverse_cast(
        dst_norm_trans_src_norm)  # Bx3x3

    # this piece of code substitutes F.affine_grid since it does not support 3x3
    grid = (create_meshgrid(h_out,
                            w_out,
                            normalized_coordinates=True,
                            device=src.device).to(src.dtype).repeat(
                                B, 1, 1, 1))
    grid = transform_points(src_norm_trans_dst_norm[:, None, None], grid)

    return F.grid_sample(src,
                         grid,
                         align_corners=align_corners,
                         mode=mode,
                         padding_mode=padding_mode)
Example #11
0
def warp_affine(
    src: torch.Tensor,
    M: torch.Tensor,
    dsize: Tuple[int, int],
    mode: str = 'bilinear',
    padding_mode: str = 'zeros',
    align_corners: Optional[bool] = None,
) -> torch.Tensor:
    r"""Applies an affine transformation to a tensor.

    .. image:: _static/img/warp_affine.png

    The function warp_affine transforms the source tensor using
    the specified matrix:

    .. math::
        \text{dst}(x, y) = \text{src} \left( M_{11} x + M_{12} y + M_{13} ,
        M_{21} x + M_{22} y + M_{23} \right )

    Args:
        src: input tensor of shape :math:`(B, C, H, W)`.
        M: affine transformation of shape :math:`(B, 2, 3)`.
        dsize: size of the output image (height, width).
        mode: interpolation mode to calculate output values ``'bilinear'`` | ``'nearest'``.
        padding_mode (str): padding mode for outside grid values ``'zeros'`` | ``'border'`` | ``'reflection'``.
        align_corners : mode for grid_generation.

    Returns:
        the warped tensor with shape :math:`(B, C, H, W)`.

    Example:
       >>> img = torch.rand(1, 4, 5, 6)
       >>> A = torch.eye(2, 3)[None]
       >>> out = warp_affine(img, A, (4, 2), align_corners=True)
       >>> print(out.shape)
       torch.Size([1, 4, 4, 2])

    .. note::
        This function is often used in conjuntion with :func:`get_rotation_matrix2d`,
        :func:`get_shear_matrix2d`, :func:`get_affine_matrix2d`, :func:`invert_affine_transform`.

    .. note::
       See a working example `here <https://kornia.readthedocs.io/en/latest/
       tutorials/warp_affine.html>`__.
    """
    if not isinstance(src, torch.Tensor):
        raise TypeError("Input src type is not a torch.Tensor. Got {}".format(
            type(src)))

    if not isinstance(M, torch.Tensor):
        raise TypeError("Input M type is not a torch.Tensor. Got {}".format(
            type(M)))

    if not len(src.shape) == 4:
        raise ValueError("Input src must be a BxCxHxW tensor. Got {}".format(
            src.shape))

    if not (len(M.shape) == 3 or M.shape[-2:] == (2, 3)):
        raise ValueError("Input M must be a Bx2x3 tensor. Got {}".format(
            M.shape))

    # TODO: remove the statement below in kornia v0.6
    if align_corners is None:
        message: str = (
            "The align_corners default value has been changed. By default now is set True "
            "in order to match cv2.warpAffine. In case you want to keep your previous "
            "behaviour set it to False. This warning will disappear in kornia > v0.6."
        )
        warnings.warn(message)
        # set default value for align corners
        align_corners = True

    B, C, H, W = src.size()

    # we generate a 3x3 transformation matrix from 2x3 affine
    M_3x3: torch.Tensor = convert_affinematrix_to_homography(M)
    dst_norm_trans_src_norm: torch.Tensor = normalize_homography(
        M_3x3, (H, W), dsize)

    # src_norm_trans_dst_norm = torch.inverse(dst_norm_trans_src_norm)
    src_norm_trans_dst_norm = _torch_inverse_cast(dst_norm_trans_src_norm)

    grid = F.affine_grid(src_norm_trans_dst_norm[:, :2, :],
                         [B, C, dsize[0], dsize[1]],
                         align_corners=align_corners)

    return F.grid_sample(src,
                         grid,
                         align_corners=align_corners,
                         mode=mode,
                         padding_mode=padding_mode)
Example #12
0
def warp_affine(
    src: torch.Tensor,
    M: torch.Tensor,
    dsize: Tuple[int, int],
    mode: str = 'bilinear',
    padding_mode: str = 'zeros',
    align_corners: bool = True,
) -> torch.Tensor:
    r"""Apply an affine transformation to a tensor.

    .. image:: _static/img/warp_affine.png

    The function warp_affine transforms the source tensor using
    the specified matrix:

    .. math::
        \text{dst}(x, y) = \text{src} \left( M_{11} x + M_{12} y + M_{13} ,
        M_{21} x + M_{22} y + M_{23} \right )

    Args:
        src: input tensor of shape :math:`(B, C, H, W)`.
        M: affine transformation of shape :math:`(B, 2, 3)`.
        dsize: size of the output image (height, width).
        mode: interpolation mode to calculate output values ``'bilinear'`` | ``'nearest'``.
        padding_mode (str): padding mode for outside grid values ``'zeros'`` | ``'border'`` | ``'reflection'``.
        align_corners : mode for grid_generation.

    Returns:
        the warped tensor with shape :math:`(B, C, H, W)`.

    .. note::
        This function is often used in conjunction with :func:`get_rotation_matrix2d`,
        :func:`get_shear_matrix2d`, :func:`get_affine_matrix2d`, :func:`invert_affine_transform`.

    .. note::
       See a working example `here <https://kornia-tutorials.readthedocs.io/en/latest/
       rotate_affine.html>`__.

    Example:
       >>> img = torch.rand(1, 4, 5, 6)
       >>> A = torch.eye(2, 3)[None]
       >>> out = warp_affine(img, A, (4, 2), align_corners=True)
       >>> print(out.shape)
       torch.Size([1, 4, 4, 2])
    """
    if not isinstance(src, torch.Tensor):
        raise TypeError(f"Input src type is not a torch.Tensor. Got {type(src)}")

    if not isinstance(M, torch.Tensor):
        raise TypeError(f"Input M type is not a torch.Tensor. Got {type(M)}")

    if not len(src.shape) == 4:
        raise ValueError(f"Input src must be a BxCxHxW tensor. Got {src.shape}")

    if not (len(M.shape) == 3 or M.shape[-2:] == (2, 3)):
        raise ValueError(f"Input M must be a Bx2x3 tensor. Got {M.shape}")

    B, C, H, W = src.size()

    # we generate a 3x3 transformation matrix from 2x3 affine
    M_3x3: torch.Tensor = convert_affinematrix_to_homography(M)
    dst_norm_trans_src_norm: torch.Tensor = normalize_homography(M_3x3, (H, W), dsize)

    # src_norm_trans_dst_norm = torch.inverse(dst_norm_trans_src_norm)
    src_norm_trans_dst_norm = _torch_inverse_cast(dst_norm_trans_src_norm)

    grid = F.affine_grid(src_norm_trans_dst_norm[:, :2, :], [B, C, dsize[0], dsize[1]], align_corners=align_corners)

    return F.grid_sample(src, grid, align_corners=align_corners, mode=mode, padding_mode=padding_mode)
Example #13
0
def warp_affine3d(
    src: torch.Tensor,
    M: torch.Tensor,
    dsize: Tuple[int, int, int],
    flags: str = 'bilinear',
    padding_mode: str = 'zeros',
    align_corners: Optional[bool] = None,
) -> torch.Tensor:
    r"""Applies a projective transformation a to 3d tensor.

    .. warning::
        This API signature it is experimental and might suffer some changes in the future.

    Args:
        src : input tensor of shape :math:`(B, C, D, H, W)`.
        M: projective transformation matrix of shape :math:`(B, 3, 4)`.
        dsize: size of the output image (depth, height, width).
        mode: interpolation mode to calculate output values
          ``'bilinear'`` | ``'nearest'``.
        padding_mode: padding mode for outside grid values
          ``'zeros'`` | ``'border'`` | ``'reflection'``.
        align_corners : mode for grid_generation.

    Returns:
        torch.Tensor: the warped 3d tensor with shape :math:`(B, C, D, H, W)`.

    .. note::
        This function is often used in conjuntion with :func:`get_perspective_transform3d`.
    """
    assert len(src.shape) == 5, src.shape
    assert len(M.shape) == 3 and M.shape[-2:] == (3, 4), M.shape
    assert len(dsize) == 3, dsize
    B, C, D, H, W = src.size()

    # TODO: remove the statement below in kornia v0.6
    if align_corners is None:
        message: str = (
            "The align_corners default value has been changed. By default now is set True "
            "in order to match cv2.warpAffine. In case you want to keep your previous "
            "behaviour set it to False. This warning will disappear in kornia > v0.6."
        )
        warnings.warn(message)
        # set default value for align corners
        align_corners = True

    size_src: Tuple[int, int, int] = (D, H, W)
    size_out: Tuple[int, int, int] = dsize

    M_4x4 = convert_affinematrix_to_homography3d(M)  # Bx4x4

    # we need to normalize the transformation since grid sample needs -1/1 coordinates
    dst_norm_trans_src_norm: torch.Tensor = normalize_homography3d(
        M_4x4, size_src, size_out)  # Bx4x4

    src_norm_trans_dst_norm = _torch_inverse_cast(dst_norm_trans_src_norm)
    P_norm: torch.Tensor = src_norm_trans_dst_norm[:, :3]  # Bx3x4

    # compute meshgrid and apply to input
    dsize_out: List[int] = [B, C] + list(size_out)
    grid = torch.nn.functional.affine_grid(P_norm,
                                           dsize_out,
                                           align_corners=align_corners)
    return torch.nn.functional.grid_sample(src,
                                           grid,
                                           align_corners=align_corners,
                                           mode=flags,
                                           padding_mode=padding_mode)
Example #14
0
 def _get_inverse_transformation(cls,
                                 transform: torch.Tensor) -> torch.Tensor:
     return _torch_inverse_cast(transform)