def variables_to_numbers(effect, conditions): new_effect_args = list(effect.args) rename_map = {} for i, arg in enumerate(effect.args): if arg[0] == "?": rename_map[arg] = i new_effect_args[i] = i new_effect = pddl.Atom(effect.predicate, new_effect_args) # There are three possibilities for arguments in conditions: # 1. They are variables that occur in the effect. In that case, # they are replaced by the corresponding position in the # effect, as indicated by the rename_map. # 2. They are constants. In that case, the unifier must guarantee # that they are matched appropriately. In that case, they are # not modified (remain strings denoting objects). # 3. They are variables that don't occur in the effect (are # projected away). This is only allowed in projection rules. # Such arguments are also not modified (remain "?x" strings). new_conditions = [] for cond in conditions: new_cond_args = [rename_map.get(arg, arg) for arg in cond.args] new_conditions.append(pddl.Atom(cond.predicate, new_cond_args)) return new_effect, new_conditions
def condition_to_rule_body(parameters, condition): for par in parameters: yield pddl.Atom(par.type, [par.name]) if not isinstance(condition, pddl.Truth): if isinstance(condition, pddl.ExistentialCondition): for par in condition.parameters: yield pddl.Atom(par.type, [par.name]) condition = condition.parts[0] if isinstance(condition, pddl.Conjunction): parts = condition.parts else: parts = (condition,) for part in parts: assert isinstance(part, pddl.Literal), "Condition not normalized" if not part.negated: yield part
def build_rules(self, rules): axiom = self.owner app_rule_head = get_axiom_predicate(axiom) app_rule_body = list(condition_to_rule_body(axiom.parameters, self.condition)) rules.append((app_rule_body, app_rule_head)) eff_rule_head = pddl.Atom(axiom.name, [par.name for par in axiom.parameters]) eff_rule_body = [app_rule_head] rules.append((eff_rule_body, eff_rule_head))
def _rename_duplicate_variables(self, atom, new_conditions): used_variables = set() for i, var_name in enumerate(atom.args): if var_name[0] == "?": if var_name in used_variables: new_var_name = "%s@%d" % (var_name, len(new_conditions)) atom = atom.rename_variables({var_name: new_var_name}) new_conditions.append( pddl.Atom("=", [var_name, new_var_name])) else: used_variables.add(var_name) return atom
def substitute_complicated_goal(task): goal = task.goal if isinstance(goal, pddl.Literal): return elif isinstance(goal, pddl.Conjunction): for item in goal.parts: if not isinstance(item, pddl.Literal): break else: return new_axiom = task.add_axiom([], goal) task.goal = pddl.Atom(new_axiom.name, new_axiom.parameters)
def remove_free_effect_variables(self): """Remove free effect variables like the variable Y in the rule p(X, Y) :- q(X). This is done by introducing a new predicate @object, setting it true for all objects, and translating the above rule to p(X, Y) :- q(X), @object(Y). After calling this, no new objects should be introduced!""" # Note: This should never be necessary for typed domains. # Leaving it in at the moment regardless. must_add_predicate = False for rule in self.rules: eff_vars = get_variables([rule.effect]) cond_vars = get_variables(rule.conditions) if not eff_vars.issubset(cond_vars): must_add_predicate = True eff_vars -= cond_vars for var in eff_vars: rule.add_condition(pddl.Atom("@object", [var])) if must_add_predicate: print("Unbound effect variables: Adding @object predicate.") self.facts += [ Fact(pddl.Atom("@object", [obj])) for obj in self.objects ]
def convert_trivial_rules(self): """Convert rules with an empty condition into facts. This must be called after bounding rule effects, so that rules with an empty condition must necessarily have a variable-free effect. Variable-free effects are the only ones for which a distinction between ground and symbolic atoms is not necessary.""" must_delete_rules = [] for i, rule in enumerate(self.rules): if not rule.conditions: assert not get_variables([rule.effect]) self.add_fact( pddl.Atom(rule.effect.predicate, rule.effect.args)) must_delete_rules.append(i) if must_delete_rules: print("Trivial rules: Converted to facts.") for rule_no in must_delete_rules[::-1]: del self.rules[rule_no]
def test_normalization(): prog = PrologProgram() prog.add_fact(pddl.Atom("at", ["foo", "bar"])) prog.add_fact(pddl.Atom("truck", ["bollerwagen"])) prog.add_fact(pddl.Atom("truck", ["segway"])) prog.add_rule( Rule([pddl.Atom("truck", ["?X"])], pddl.Atom("at", ["?X", "?Y"]))) prog.add_rule( Rule([pddl.Atom("truck", ["X"]), pddl.Atom("location", ["?Y"])], pddl.Atom("at", ["?X", "?Y"]))) prog.add_rule( Rule([pddl.Atom("truck", ["?X"]), pddl.Atom("location", ["?Y"])], pddl.Atom("at", ["?X", "?X"]))) prog.add_rule( Rule([pddl.Atom("p", ["?Y", "?Z", "?Y", "?Z"])], pddl.Atom("q", ["?Y", "?Y"]))) prog.add_rule(Rule([], pddl.Atom("foo", []))) prog.add_rule(Rule([], pddl.Atom("bar", ["X"]))) prog.normalize() prog.dump()
def translate_typed_object(prog, obj, type_dict): supertypes = type_dict[obj.type].supertype_names for type_name in [obj.type] + supertypes: prog.add_fact(pddl.Atom(type_name, [obj.name]))
def build_rules(self, rules): rule_head_name = "@goal-reachable" rule_head = pddl.Atom("@goal-reachable", []) rule_body = list(condition_to_rule_body([], self.condition)) rules.append((rule_body, rule_head))
def get_axiom_predicate(axiom): name = axiom variables = [par.name for par in axiom.parameters] if isinstance(axiom.condition, pddl.ExistentialCondition): variables += [par.name for par in axiom.condition.parameters] return pddl.Atom(name, variables)
def push(self, predicate, args): self.num_pushes += 1 eff_tuple = (predicate, ) + tuple(args) if eff_tuple not in self.enqueued: self.enqueued.add(eff_tuple) self.queue.append(pddl.Atom(predicate, list(args)))
def project_rule(rule, conditions, name_generator): predicate = name_generator.next() effect_variables = set(rule.effect.args) & get_variables(conditions) effect = pddl.Atom(predicate, list(effect_variables)) projected_rule = Rule(conditions, effect) return projected_rule
def add_rule(self, type, conditions, effect_vars): effect = pddl.Atom(self.name_generator.next(), effect_vars) rule = pddl_to_prolog.Rule(conditions, effect) rule.type = type self.result.append(rule) return rule.effect