Example #1
0
 def test_theta_computed_boolean(self):
     theta_init = self.random_theta(2, 1)
     mcmc = KurslMCMC(theta_init, niter=2)
     self.assertFalse(mcmc._theta_computed(), "Without run should fail")
     mcmc.set_sampler(np.linspace(0, 1, 100), np.random.random(100))
     mcmc.run()
     self.assertTrue(mcmc._theta_computed(), "After run should return true")
Example #2
0
    def test_run_start_from_solution(self):
        _cos = lambda l: l[2] * np.cos(l[0] * t + l[1])
        theta = np.array([
            [15, 0, 1, 0],
            [35, 2, 3, 0],
        ], dtype=np.float64)
        t = np.linspace(0, 1, 100)
        c1 = _cos(theta[0])
        c2 = _cos(theta[1])
        S = c1 + c2

        # Initial guess is far off. Just for an example.
        theta_init = np.array(theta, dtype=np.float64)
        theta_init += np.random.random(theta_init.shape) * 3
        mcmc = KurslMCMC(theta_init)
        mcmc.set_sampler(t, S)

        # However, execution starts close to solution.
        pos = np.tile(theta.flatten(), (mcmc.nwalkers, 1))
        pos += np.random.random(pos.shape) * 0.3
        mcmc.run(pos=pos)
        niter_executed = mcmc.get_lnprob().shape[0]
        self.assertTrue(
            niter_executed < mcmc.niter,
            "Starting close solution should allow for quick convergence "
            "and not all iterations would be executed.")
Example #3
0
    def test_run_default(self):
        _cos = lambda l: l[2] * np.cos(l[0] * t + l[1])
        theta = [
            [15, 0, 1, 0],
            [35, 2, 3, 0],
        ]
        theta_std = [
            [1.0, 0.1, 0.8, 0.01],
            [1.5, 0.1, 1.5, 0.01],
        ]
        theta, theta_std = np.array(theta), np.array(theta_std)
        t = np.linspace(0, 1, 100)
        c1 = _cos(theta[0])
        c2 = _cos(theta[1])
        S = c1 + c2

        theta_init = np.array(theta, dtype=np.float64)
        theta_init[:, 0] += 2 - np.random.random(2) * 0.5
        theta_init[:, 2] += 1 - np.random.random(2) * 0.5
        mcmc = KurslMCMC(theta_init, theta_std, nwalkers=40, niter=200)
        mcmc.set_threshold(0.001)
        mcmc.set_sampler(t, S)
        mcmc.run()

        # After simulation is finished check for correctness
        theta_computed = mcmc.get_theta()
        self.assertTrue(
            np.allclose(theta, theta_computed, atol=0.5),
            "Expected:\n{}\nReceived:\n{}".format(theta, theta_computed))
Example #4
0
 def test_run_with_incorrect_pos(self):
     t = np.linspace(0, 1, 100)
     S = np.random.random(t.size)
     mcmc = KurslMCMC(self.random_theta(3, 2))
     mcmc.set_sampler(t, S)
     with self.assertRaises(ValueError) as error:
         mcmc.run(pos=self.random_theta(3, 2))
     self.assertTrue("pos.shape" in str(error.exception))
Example #5
0
 def test_run_without_sampler(self):
     mcmc = KurslMCMC(self.random_theta(3, 2))
     with self.assertRaises(AttributeError) as error:
         mcmc.run()
     self.assertTrue("Sampler not defined" in str(error.exception))
     self.assertTrue("set_sampler" in str(error.exception))
Example #6
0
 def test_run_without_model(self):
     mcmc = KurslMCMC(self.random_theta(3, 2))
     mcmc.model = None  # This situation shouldn't even be possible
     with self.assertRaises(AttributeError) as error:
         mcmc.run()
     self.assertEqual("Model not selected", str(error.exception))