Example #1
0
def to_streaming_inference(model_non_stream, flags, mode):
    """Convert non streaming trained model to inference modes.

  Args:
    model_non_stream: trained Keras model non streamable
    flags: settings with global data and model properties
    mode: it supports Non streaming inference, Streaming inference with internal
      states, Streaming inference with external states

  Returns:
    Keras inference model of inference_type
  """
    tf.keras.backend.set_learning_phase(0)
    input_data_shape = modes.get_input_data_shape(flags, mode)

    # get input data type and use it for input streaming type
    dtype = (model_non_stream.input[0].dtype if isinstance(
        model_non_stream.input, tuple) else model_non_stream.input.dtype)
    input_tensors = [
        tf.keras.layers.Input(shape=input_data_shape,
                              batch_size=1,
                              dtype=dtype,
                              name='input_audio')
    ]
    quantize_stream_scope = quantize.quantize_scope()
    with quantize_stream_scope:
        model_inference = convert_to_inference_model(model_non_stream,
                                                     input_tensors, mode)
    return model_inference
Example #2
0
def model(flags):
    """Convolutional recurrent neural network (CRNN) model.

  It is based on paper
  Convolutional Recurrent Neural Networks for Small-Footprint Keyword Spotting
  https://arxiv.org/pdf/1703.05390.pdf
  Represented as sequence of Conv, RNN/GRU, FC layers.
  Model topology is similar with "Hello Edge: Keyword Spotting on
  Microcontrollers" https://arxiv.org/pdf/1711.07128.pdf
  Args:
    flags: data/model parameters

  Returns:
    Keras model for training
  """
    input_audio = tf.keras.layers.Input(shape=modes.get_input_data_shape(
        flags, modes.Modes.TRAINING),
                                        batch_size=flags.batch_size)
    net = input_audio

    if flags.preprocess == 'raw':
        # it is a self contained model, user need to feed raw audio only
        net = speech_features.SpeechFeatures(
            speech_features.SpeechFeatures.get_params(flags))(net)

    # expand dims for the next layer 2d conv
    net = tf.keras.backend.expand_dims(net)
    for filters, kernel_size, activation, dilation_rate, strides in zip(
            parse(flags.cnn_filters), parse(flags.cnn_kernel_size),
            parse(flags.cnn_act), parse(flags.cnn_dilation_rate),
            parse(flags.cnn_strides)):
        net = stream.Stream(
            cell=tf.keras.layers.Conv2D(filters=filters,
                                        kernel_size=kernel_size,
                                        activation=activation,
                                        dilation_rate=dilation_rate,
                                        strides=strides))(net)

    shape = net.shape
    # input net dimension: [batch, time, feature, channels]
    # reshape dimension: [batch, time, feature * channels]
    # so that GRU/RNN can process it
    net = tf.keras.layers.Reshape((-1, shape[2] * shape[3]))(net)

    for units, return_sequences in zip(parse(flags.gru_units),
                                       parse(flags.return_sequences)):
        net = gru.GRU(units=units,
                      return_sequences=return_sequences,
                      stateful=flags.stateful)(net)

    net = stream.Stream(cell=tf.keras.layers.Flatten())(net)
    net = tf.keras.layers.Dropout(rate=flags.dropout1)(net)

    for units, activation in zip(parse(flags.units1), parse(flags.act1)):
        net = tf.keras.layers.Dense(units=units, activation=activation)(net)

    net = tf.keras.layers.Dense(units=flags.label_count)(net)
    if flags.return_softmax:
        net = tf.keras.layers.Activation('softmax')(net)
    return tf.keras.Model(input_audio, net)
Example #3
0
def model(flags):
    """Temporal Convolution ResNet model.

  It can be configured to reproduce model config as described in the paper below
  Temporal Convolution for Real-time Keyword Spotting on Mobile Devices
  https://arxiv.org/pdf/1904.03814.pdf
  Args:
    flags: data/model parameters

  Returns:
    Keras model for training
  """

    tc_filters = parse(flags.tc_filters)
    repeat_tc_convs = parse(flags.repeat_tc_convs)
    kernel_sizes = parse(flags.kernel_sizes)
    pool_sizes = parse(flags.pool_sizes)
    dilations = parse(flags.dilations)
    residuals = parse(flags.residuals)

    if len(
            set((len(repeat_tc_convs), len(kernel_sizes), len(pool_sizes),
                 len(dilations), len(residuals), len(tc_filters)))) != 1:
        raise ValueError('all input lists have to be the same length')

    input_audio = tf.keras.layers.Input(shape=modes.get_input_data_shape(
        flags, modes.Modes.TRAINING),
                                        batch_size=flags.batch_size)
    net = input_audio

    if flags.preprocess == 'raw':
        # it is a self contained model, user need to feed raw audio only
        net = speech_features.SpeechFeatures(
            speech_features.SpeechFeatures.get_params(flags))(net)

    # make it [batch, time, 1, feature]
    net = tf.keras.backend.expand_dims(net, axis=2)

    for filters, repeat, kernel_size, pool_size, dilation, residual in zip(
            tc_filters, repeat_tc_convs, kernel_sizes, pool_sizes, dilations,
            residuals):
        net = resnet_block(net, repeat, kernel_size, filters, dilation,
                           residual, flags.padding_in_time, flags.dropout,
                           flags.activation)

        if pool_size > 1:
            net = tf.keras.layers.MaxPooling2D((pool_size, 1))(net)

    net = stream.Stream(cell=tf.keras.layers.GlobalAveragePooling2D())(net)

    net = tf.keras.layers.Dense(units=flags.label_count)(net)
    if flags.return_softmax:
        net = tf.keras.layers.Activation('softmax')(net)
    return tf.keras.Model(input_audio, net)
Example #4
0
def model(flags):
  """SVDF model.

  This model is based on decomposition of a densely connected ops
  into low rank filters.
  It is based on paper
  END-TO-END STREAMING KEYWORD SPOTTING https://arxiv.org/pdf/1812.02802.pdf
  Args:
    flags: data/model parameters

  Returns:
    Keras model for training
  """

  input_audio = tf.keras.layers.Input(
      shape=modes.get_input_data_shape(flags, modes.Modes.TRAINING),
      batch_size=flags.batch_size)
  net = input_audio

  if flags.preprocess == 'raw':
    # it is a self contained model, user need to feed raw audio only
    net = speech_features.SpeechFeatures(
        speech_features.SpeechFeatures.get_params(flags))(
            net)

  # for streaming mode it is better to use causal padding
  padding = 'causal' if flags.svdf_pad else 'valid'

  for i, (units1, memory_size, units2, dropout, activation) in enumerate(
      zip(
          utils.parse(flags.svdf_units1), utils.parse(flags.svdf_memory_size),
          utils.parse(flags.svdf_units2), utils.parse(flags.svdf_dropout),
          utils.parse(flags.svdf_act))):
    net = svdf.Svdf(
        units1=units1,
        memory_size=memory_size,
        units2=units2,
        dropout=dropout,
        activation=activation,
        pad=padding,
        name='svdf_%d' % i)(
            net)

  net = stream.Stream(cell=tf.keras.layers.Flatten())(net)
  net = tf.keras.layers.Dropout(rate=flags.dropout1)(net)

  for units, activation in zip(
      utils.parse(flags.units2), utils.parse(flags.act2)):
    net = tf.keras.layers.Dense(units=units, activation=activation)(net)

  net = tf.keras.layers.Dense(units=flags.label_count)(net)
  if flags.return_softmax:
    net = tf.keras.layers.Activation('softmax')(net)
  return tf.keras.Model(input_audio, net)
Example #5
0
def model(flags):
    """Inception resnet model.

  It is based on paper:
  Inception-v4, Inception-ResNet and the Impact of
     Residual Connections on Learning https://arxiv.org/abs/1602.07261
  Args:
    flags: data/model parameters

  Returns:
    Keras model for training
  """
    input_audio = tf.keras.layers.Input(shape=modes.get_input_data_shape(
        flags, modes.Modes.TRAINING),
                                        batch_size=flags.batch_size)
    net = input_audio

    if flags.preprocess == 'raw':
        # it is a self contained model, user need to feed raw audio only
        net = speech_features.SpeechFeatures(
            speech_features.SpeechFeatures.get_params(flags))(net)

    # [batch, time, feature]
    net = tf.keras.backend.expand_dims(net, axis=-1)
    # [batch, time, feature, 1]

    for filters in utils.parse(flags.cnn_filters0):
        net = tf.keras.layers.SeparableConv2D(filters, (3, 3),
                                              padding='valid',
                                              use_bias=False)(net)
        net = tf.keras.layers.BatchNormalization(scale=flags.bn_scale)(net)
        net = tf.keras.layers.Activation('relu')(net)
        net = tf.keras.layers.MaxPooling2D((3, 3), strides=(2, 2))(net)
        # [batch, time, feature, filters]

    for stride, scale, filters_branch0, filters_branch1 in zip(
            utils.parse(flags.strides), utils.parse(flags.scales),
            utils.parse(flags.filters_branch0),
            utils.parse(flags.filters_branch1)):
        net = inception_resnet_block(net,
                                     scale,
                                     filters_branch0,
                                     filters_branch1,
                                     bn_scale=flags.bn_scale)
        net = tf.keras.layers.MaxPooling2D(3, strides=stride,
                                           padding='valid')(net)
        # [batch, time, feature, filters]

    net = tf.keras.layers.GlobalAveragePooling2D()(net)
    # [batch, filters]
    net = tf.keras.layers.Dropout(flags.dropout)(net)
    net = tf.keras.layers.Dense(flags.label_count)(net)
    return tf.keras.Model(input_audio, net)
Example #6
0
def model(flags):
  """Fully connected layer based model.

  It is based on paper (with added pooling):
  SMALL-FOOTPRINT KEYWORD SPOTTING USING DEEP NEURAL NETWORKS
  https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42537.pdf
  Model topology is similar with "Hello Edge: Keyword Spotting on
  Microcontrollers" https://arxiv.org/pdf/1711.07128.pdf
  Args:
    flags: data/model parameters

  Returns:
    Keras model for training
  """

  input_audio = tf.keras.layers.Input(
      shape=modes.get_input_data_shape(flags, modes.Modes.TRAINING),
      batch_size=flags.batch_size)
  net = input_audio

  if flags.preprocess == 'raw':
    # it is a self contained model, user need to feed raw audio only
    net = speech_features.SpeechFeatures(
        speech_features.SpeechFeatures.get_params(flags))(
            net)

  for units, activation in zip(
      utils.parse(flags.units1), utils.parse(flags.act1)):
    net = tf.keras.layers.Dense(units=units, activation=activation)(net)

  net = stream.Stream(cell=tf.keras.layers.Flatten())(net)

  # after flattening data in time, we can apply any layer: pooling, bi-lstm etc
  if flags.pool_size > 1:
    # add fake dim for compatibility with pooling
    net = tf.keras.backend.expand_dims(net, axis=-1)
    net = tf.keras.layers.MaxPool1D(
        pool_size=flags.pool_size,
        strides=flags.strides,
        data_format='channels_last')(net)
    # remove fake dim
    net = tf.keras.backend.squeeze(net, axis=-1)

  net = tf.keras.layers.Dropout(rate=flags.dropout1)(net)

  for units, activation in zip(
      utils.parse(flags.units2), utils.parse(flags.act2)):
    net = tf.keras.layers.Dense(units=units, activation=activation)(net)

  net = tf.keras.layers.Dense(units=flags.label_count)(net)
  if flags.return_softmax:
    net = tf.keras.layers.Activation('softmax')(net)
  return tf.keras.Model(input_audio, net)
Example #7
0
def model(flags):
    """CNN model.

  It is based on paper:
  Convolutional Neural Networks for Small-footprint Keyword Spotting
  http://www.isca-speech.org/archive/interspeech_2015/papers/i15_1478.pdf
  Model topology is similar with "Hello Edge: Keyword Spotting on
  Microcontrollers" https://arxiv.org/pdf/1711.07128.pdf

  Args:
    flags: data/model parameters

  Returns:
    Keras model for training
  """

    input_audio = tf.keras.layers.Input(shape=modes.get_input_data_shape(
        flags, modes.Modes.TRAINING),
                                        batch_size=flags.batch_size)
    net = input_audio

    if flags.preprocess == 'raw':
        # it is a self contained model, user need to feed raw audio only
        net = speech_features.SpeechFeatures(
            speech_features.SpeechFeatures.get_params(flags))(net)

    net = tf.keras.backend.expand_dims(net)
    for filters, kernel_size, activation, dilation_rate, strides in zip(
            utils.parse(flags.cnn_filters), utils.parse(flags.cnn_kernel_size),
            utils.parse(flags.cnn_act), utils.parse(flags.cnn_dilation_rate),
            utils.parse(flags.cnn_strides)):
        net = stream.Stream(
            cell=tf.keras.layers.Conv2D(filters=filters,
                                        kernel_size=kernel_size,
                                        activation=activation,
                                        dilation_rate=dilation_rate,
                                        strides=strides))(net)

    net = stream.Stream(cell=tf.keras.layers.Flatten())(net)
    net = tf.keras.layers.Dropout(rate=flags.dropout1)(net)

    for units, activation in zip(utils.parse(flags.units2),
                                 utils.parse(flags.act2)):
        net = tf.keras.layers.Dense(units=units, activation=activation)(net)

    net = tf.keras.layers.Dense(units=flags.label_count)(net)
    if flags.return_softmax:
        net = tf.keras.layers.Activation('softmax')(net)
    return tf.keras.Model(input_audio, net)
Example #8
0
def model(flags):
  """LSTM model.

  Similar model in papers:
  Convolutional Recurrent Neural Networks for Small-Footprint Keyword Spotting
  https://arxiv.org/pdf/1703.05390.pdf (with no conv layer)
  Model topology is similar with "Hello Edge: Keyword Spotting on
  Microcontrollers" https://arxiv.org/pdf/1711.07128.pdf

  Args:
    flags: data/model parameters

  Returns:
    Keras model for training
  """
  input_audio = tf.keras.layers.Input(
      shape=modes.get_input_data_shape(flags, modes.Modes.TRAINING),
      batch_size=flags.batch_size)
  net = input_audio

  if flags.preprocess == 'raw':
    # it is a self contained model, user need to feed raw audio only
    net = speech_features.SpeechFeatures(
        speech_features.SpeechFeatures.get_params(flags))(
            net)

  for units, return_sequences, num_proj in zip(
      utils.parse(flags.lstm_units), utils.parse(flags.return_sequences),
      utils.parse(flags.num_proj)):
    net = lstm.LSTM(
        units=units,
        return_sequences=return_sequences,
        stateful=flags.stateful,
        use_peepholes=flags.use_peepholes,
        num_proj=num_proj)(
            net)

  net = stream.Stream(cell=tf.keras.layers.Flatten())(net)
  net = tf.keras.layers.Dropout(rate=flags.dropout1)(net)

  for units, activation in zip(
      utils.parse(flags.units1), utils.parse(flags.act1)):
    net = tf.keras.layers.Dense(units=units, activation=activation)(net)

  net = tf.keras.layers.Dense(units=flags.label_count)(net)
  if flags.return_softmax:
    net = tf.keras.layers.Activation('softmax')(net)
  return tf.keras.Model(input_audio, net)
Example #9
0
def to_streaming_inference(model_non_stream, flags, mode):
  """Convert non streaming trained model to inference modes.

  Args:
    model_non_stream: trained Keras model non streamable
    flags: settings with global data and model properties
    mode: it supports Non streaming inference, Streaming inference with internal
      states, Streaming inference with external states

  Returns:
    Keras inference model of inference_type
  """
  tf.keras.backend.set_learning_phase(0)
  input_data_shape = modes.get_input_data_shape(flags, mode)
  input_tensors = [
      tf.keras.layers.Input(
          shape=input_data_shape, batch_size=1, name='input_audio')
  ]
  model_inference = convert_to_inference_model(model_non_stream, input_tensors,
                                               mode)
  return model_inference
Example #10
0
def model(flags):
    """Gated Recurrent Unit(GRU) model.

  It is based on paper
  Convolutional Recurrent Neural Networks for Small-Footprint Keyword Spotting
  https://arxiv.org/pdf/1703.05390.pdf (with no conv layer)
  Hello Edge: Keyword Spotting on Microcontrollers
  https://arxiv.org/pdf/1711.07128.pdf
  Args:
    flags: data/model parameters

  Returns:
    Keras model for training
  """
    input_audio = tf.keras.layers.Input(shape=modes.get_input_data_shape(
        flags, modes.Modes.TRAINING),
                                        batch_size=flags.batch_size)
    net = input_audio

    if flags.preprocess == 'raw':
        # it is a self contained model, user need to feed raw audio only
        net = speech_features.SpeechFeatures(
            speech_features.SpeechFeatures.get_params(flags))(net)

    for units, return_sequences in zip(parse(flags.gru_units),
                                       parse(flags.return_sequences)):
        net = GRU(units=units,
                  return_sequences=return_sequences,
                  stateful=flags.stateful)(net)

    net = Stream(cell=tf.keras.layers.Flatten())(net)
    net = tf.keras.layers.Dropout(rate=flags.dropout1)(net)

    for units, activation in zip(parse(flags.units1), parse(flags.act1)):
        net = tf.keras.layers.Dense(units=units, activation=activation)(net)

    net = tf.keras.layers.Dense(units=flags.label_count)(net)
    return tf.keras.Model(input_audio, net)
Example #11
0
def model(flags):
  """Mobilenet model.

  It is based on paper:
  MobileNets: Efficient Convolutional Neural Networks for
     Mobile Vision Applications https://arxiv.org/abs/1704.04861
  It is applied on sequence in time, so only 1D filters applied
  Args:
    flags: data/model parameters

  Returns:
    Keras model for training
  """
  input_audio = tf.keras.layers.Input(
      shape=modes.get_input_data_shape(flags, modes.Modes.TRAINING),
      batch_size=flags.batch_size)
  net = input_audio

  if flags.preprocess == 'raw':
    # it is a self contained model, user need to feed raw audio only
    net = speech_features.SpeechFeatures(
        speech_features.SpeechFeatures.get_params(flags))(
            net)

  # [batch, time, feature]
  net = tf.keras.backend.expand_dims(net, axis=2)
  # [batch, time, feature, 1]

  # it is convolutional block
  net = tf.keras.layers.Conv2D(
      filters=flags.cnn1_filters,
      kernel_size=utils.parse(flags.cnn1_kernel_size),
      padding='valid',
      use_bias=False,
      strides=utils.parse(flags.cnn1_strides))(
          net)
  net = tf.keras.layers.BatchNormalization(scale=flags.bn_scale)(net)
  net = tf.keras.layers.ReLU(6.)(net)
  # [batch, time, feature, filters]

  for kernel_size, strides, filters in zip(
      utils.parse(flags.ds_kernel_size), utils.parse(flags.ds_strides),
      utils.parse(flags.cnn_filters)):
    # it is depthwise convolutional block
    net = tf.keras.layers.DepthwiseConv2D(
        kernel_size,
        padding='same' if strides == (1, 1) else 'valid',
        depth_multiplier=1,
        strides=strides,
        use_bias=False)(
            net)
    net = tf.keras.layers.BatchNormalization(scale=flags.bn_scale)(net)
    net = tf.keras.layers.ReLU(6.,)(net)

    net = tf.keras.layers.Conv2D(
        filters=filters, kernel_size=(1, 1),
        padding='same',
        use_bias=False,
        strides=(1, 1))(net)
    net = tf.keras.layers.BatchNormalization(scale=flags.bn_scale)(net)
    net = tf.keras.layers.ReLU(6.)(net)
    # [batch, time, feature, filters]

  net = tf.keras.layers.GlobalAveragePooling2D()(net)
  # [batch, filters]
  net = tf.keras.layers.Dropout(flags.dropout)(net)
  net = tf.keras.layers.Dense(flags.label_count)(net)
  if flags.return_softmax:
    net = tf.keras.layers.Activation('softmax')(net)
  # [batch, label_count]
  return tf.keras.Model(input_audio, net)
Example #12
0
def model(flags):
    """Inception model.

  It is based on paper:
  Rethinking the Inception Architecture for Computer Vision
      http://arxiv.org/abs/1512.00567
  Args:
    flags: data/model parameters

  Returns:
    Keras model for training
  """
    input_audio = tf.keras.layers.Input(shape=modes.get_input_data_shape(
        flags, modes.Modes.TRAINING),
                                        batch_size=flags.batch_size)
    net = input_audio

    if flags.preprocess == 'raw':
        # it is a self contained model, user need to feed raw audio only
        net = speech_features.SpeechFeatures(
            speech_features.SpeechFeatures.get_params(flags))(net)

    # [batch, time, feature]
    net = tf.keras.backend.expand_dims(net, axis=-1)
    # [batch, time, feature, 1]

    for filters in utils.parse(flags.cnn_filters0):
        net = tf.keras.layers.SeparableConv2D(filters, (3, 3),
                                              padding='valid',
                                              use_bias=False)(net)
        net = tf.keras.layers.BatchNormalization(scale=flags.bn_scale)(net)
        net = tf.keras.layers.Activation('relu')(net)
        net = tf.keras.layers.MaxPooling2D((3, 3), strides=(2, 2))(net)
        # [batch, time, feature, filters]

    filters = utils.parse(flags.cnn_filters0)[-1]
    net = utils.conv2d_bn(net,
                          filters, (3, 1),
                          padding='valid',
                          scale=flags.bn_scale)
    net = utils.conv2d_bn(net,
                          filters, (1, 3),
                          padding='valid',
                          scale=flags.bn_scale)

    for stride, filters1, filters2 in zip(utils.parse(flags.cnn_strides),
                                          utils.parse(flags.cnn_filters1),
                                          utils.parse(flags.cnn_filters2)):

        if stride > 1:
            net = tf.keras.layers.MaxPooling2D((3, 3), strides=stride)(net)

        branch1 = utils.conv2d_bn(net, filters2, (1, 1), scale=flags.bn_scale)

        branch2 = utils.conv2d_bn(net, filters1, (1, 1), scale=flags.bn_scale)
        branch2 = utils.conv2d_bn(branch2,
                                  filters1, (3, 1),
                                  scale=flags.bn_scale)
        branch2 = utils.conv2d_bn(branch2,
                                  filters2, (1, 3),
                                  scale=flags.bn_scale)

        branch3 = utils.conv2d_bn(net, filters1, (1, 1), scale=flags.bn_scale)
        branch3 = utils.conv2d_bn(branch3,
                                  filters1, (3, 1),
                                  scale=flags.bn_scale)
        branch3 = utils.conv2d_bn(branch3,
                                  filters1, (1, 3),
                                  scale=flags.bn_scale)
        branch3 = utils.conv2d_bn(branch3,
                                  filters1, (3, 1),
                                  scale=flags.bn_scale)
        branch3 = utils.conv2d_bn(branch3,
                                  filters2, (1, 3),
                                  scale=flags.bn_scale)

        branch4 = tf.keras.layers.AveragePooling2D((3, 3),
                                                   strides=(1, 1),
                                                   padding='same')(net)
        branch4 = utils.conv2d_bn(branch4,
                                  filters2, (1, 1),
                                  scale=flags.bn_scale)
        net = tf.keras.layers.concatenate([branch1, branch2, branch3, branch4])
        # [batch, time, feature, filters*4]

    net = tf.keras.layers.GlobalAveragePooling2D()(net)
    # [batch, filters*4]
    net = tf.keras.layers.Dropout(flags.dropout)(net)
    net = tf.keras.layers.Dense(flags.label_count)(net)
    return tf.keras.Model(input_audio, net)
Example #13
0
def model(flags):
    """Temporal Convolution ResNet model.

  It is based on paper:
  Temporal Convolution for Real-time Keyword Spotting on Mobile Devices
  https://arxiv.org/pdf/1904.03814.pdf
  Args:
    flags: data/model parameters

  Returns:
    Keras model for training
  """
    input_audio = tf.keras.layers.Input(shape=modes.get_input_data_shape(
        flags, modes.Modes.TRAINING),
                                        batch_size=flags.batch_size)
    net = input_audio

    if flags.preprocess == 'raw':
        # it is a self contained model, user need to feed raw audio only
        net = speech_features.SpeechFeatures(
            speech_features.SpeechFeatures.get_params(flags))(net)

    time_size, feature_size = net.shape[1:3]

    channels = utils.parse(flags.channels)

    net = tf.keras.backend.expand_dims(net)

    if flags.debug_2d:
        conv_kernel = first_conv_kernel = (3, 3)
    else:
        net = tf.reshape(
            net, [-1, time_size, 1, feature_size])  # [batch, time, 1, feature]
        first_conv_kernel = (3, 1)
        conv_kernel = utils.parse(flags.kernel_size)

    net = tf.keras.layers.Conv2D(filters=channels[0],
                                 kernel_size=first_conv_kernel,
                                 strides=1,
                                 padding='same',
                                 activation='linear')(net)
    net = tf.keras.layers.BatchNormalization(momentum=flags.bn_momentum,
                                             center=flags.bn_center,
                                             scale=flags.bn_scale,
                                             renorm=flags.bn_renorm)(net)
    net = tf.keras.layers.Activation('relu')(net)

    if utils.parse(flags.pool_size):
        net = tf.keras.layers.AveragePooling2D(pool_size=utils.parse(
            flags.pool_size),
                                               strides=flags.pool_stride)(net)

    channels = channels[1:]

    # residual blocks
    for n in channels:
        if n != net.shape[-1]:
            stride = 2
            layer_in = tf.keras.layers.Conv2D(filters=n,
                                              kernel_size=1,
                                              strides=stride,
                                              padding='same',
                                              activation='linear')(net)
            layer_in = tf.keras.layers.BatchNormalization(
                momentum=flags.bn_momentum,
                center=flags.bn_center,
                scale=flags.bn_scale,
                renorm=flags.bn_renorm)(layer_in)
            layer_in = tf.keras.layers.Activation('relu')(layer_in)
        else:
            layer_in = net
            stride = 1

        net = tf.keras.layers.Conv2D(filters=n,
                                     kernel_size=conv_kernel,
                                     strides=stride,
                                     padding='same',
                                     activation='linear')(net)
        net = tf.keras.layers.BatchNormalization(momentum=flags.bn_momentum,
                                                 center=flags.bn_center,
                                                 scale=flags.bn_scale,
                                                 renorm=flags.bn_renorm)(net)
        net = tf.keras.layers.Activation('relu')(net)

        net = tf.keras.layers.Conv2D(filters=n,
                                     kernel_size=conv_kernel,
                                     strides=1,
                                     padding='same',
                                     activation='linear')(net)
        net = tf.keras.layers.BatchNormalization(momentum=flags.bn_momentum,
                                                 center=flags.bn_center,
                                                 scale=flags.bn_scale,
                                                 renorm=flags.bn_renorm)(net)

        # residual connection
        net = tf.keras.layers.Add()([net, layer_in])
        net = tf.keras.layers.Activation('relu')(net)

    net = tf.keras.layers.AveragePooling2D(pool_size=net.shape[1:3],
                                           strides=1)(net)

    net = tf.keras.layers.Dropout(rate=flags.dropout)(net)

    # fully connected layer
    net = tf.keras.layers.Conv2D(filters=flags.label_count,
                                 kernel_size=1,
                                 strides=1,
                                 padding='same',
                                 activation='linear')(net)

    net = tf.reshape(net, shape=(-1, net.shape[3]))
    if flags.return_softmax:
        net = tf.keras.layers.Activation('softmax')(net)
    return tf.keras.Model(input_audio, net)
Example #14
0
def model(flags):
    """Xception model.

  It is based on paper:
  Xception: Deep Learning with Depthwise Separable Convolutions
      https://arxiv.org/abs/1610.02357
  Args:
    flags: data/model parameters

  Returns:
    Keras model for training
  """
    input_audio = tf.keras.layers.Input(shape=modes.get_input_data_shape(
        flags, modes.Modes.TRAINING),
                                        batch_size=flags.batch_size)
    net = input_audio

    if flags.preprocess == 'raw':
        # it is a self contained model, user need to feed raw audio only
        net = speech_features.SpeechFeatures(
            speech_features.SpeechFeatures.get_params(flags))(net)

    # [batch, time, feature]
    net = tf.keras.backend.expand_dims(net, axis=-1)
    # [batch, time, feature, 1]

    # conv block
    for kernel_size, stride, filters in zip(parse(flags.cnn1_kernel_size),
                                            parse(flags.cnn1_strides),
                                            parse(flags.cnn1_filters)):
        net = tf.keras.layers.Conv2D(filters,
                                     kernel_size,
                                     strides=stride,
                                     use_bias=False)(net)
        net = tf.keras.layers.BatchNormalization(scale=flags.bn_scale)(net)
        net = tf.keras.layers.Activation('relu')(net)
        # [batch, time, feature, filters]

    # first residual block
    for filters in parse(flags.cnn2_filters):
        residual = tf.keras.layers.Conv2D(filters, (1, 1),
                                          strides=(2, 2),
                                          padding='same',
                                          use_bias=False)(net)
        residual = tf.keras.layers.BatchNormalization(
            scale=flags.bn_scale)(residual)
        net = tf.keras.layers.SeparableConv2D(filters, (3, 3),
                                              padding='same',
                                              use_bias=False)(net)
        net = tf.keras.layers.BatchNormalization(scale=flags.bn_scale)(net)
        net = tf.keras.layers.MaxPooling2D((3, 3),
                                           strides=(2, 2),
                                           padding='same')(net)
        net = tf.keras.layers.add([net, residual])
        # [batch, time, feature, filters]

    # second residual block
    filters = parse(flags.cnn2_filters)[-1]
    for _ in range(flags.cnn3_blocks):
        residual = net
        net = tf.keras.layers.Activation('relu')(net)
        net = tf.keras.layers.SeparableConv2D(filters, (3, 3),
                                              padding='same',
                                              use_bias=False)(net)
        net = tf.keras.layers.BatchNormalization(scale=flags.bn_scale)(net)
        net = tf.keras.layers.Activation('relu')(net)
        net = tf.keras.layers.SeparableConv2D(
            filters,
            (3, 3),
            padding='same',
            use_bias=False,
        )(net)
        net = tf.keras.layers.BatchNormalization(scale=flags.bn_scale)(net)
        net = tf.keras.layers.Activation('relu')(net)
        net = tf.keras.layers.SeparableConv2D(filters, (3, 3),
                                              padding='same',
                                              use_bias=False)(net)
        net = tf.keras.layers.BatchNormalization(scale=flags.bn_scale)(net)
        net = tf.keras.layers.add([net, residual])
        # [batch, time, feature, filters]

    net = tf.keras.layers.GlobalAveragePooling2D()(net)
    # [batch, filters]
    net = tf.keras.layers.Dropout(flags.dropout)(net)
    net = tf.keras.layers.Dense(flags.label_count)(net)
    # [batch, label_count]
    return tf.keras.Model(input_audio, net)
Example #15
0
def model(flags):
    """Inception model.

  It is based on paper:
  Rethinking the Inception Architecture for Computer Vision
      http://arxiv.org/abs/1512.00567
  Args:
    flags: data/model parameters

  Returns:
    Keras model for training
  """
    input_audio = tf.keras.layers.Input(shape=modes.get_input_data_shape(
        flags, modes.Modes.TRAINING),
                                        batch_size=flags.batch_size)
    net = input_audio

    if flags.preprocess == 'raw':
        # it is a self contained model, user need to feed raw audio only
        net = speech_features.SpeechFeatures(
            speech_features.SpeechFeatures.get_params(flags))(net)

    # [batch, time, feature]
    net = tf.keras.backend.expand_dims(net, axis=2)
    # [batch, time, 1, feature]

    for stride, filters, kernel_size in zip(
            utils.parse(flags.cnn1_strides), utils.parse(flags.cnn1_filters),
            utils.parse(flags.cnn1_kernel_sizes)):
        net = utils.conv2d_bn(net,
                              filters, (kernel_size, 1),
                              padding='valid',
                              scale=flags.bn_scale)
        if stride > 1:
            net = tf.keras.layers.MaxPooling2D((3, 1),
                                               strides=(stride, 1))(net)

    for stride, filters1, filters2, kernel_size in zip(
            utils.parse(flags.cnn2_strides), utils.parse(flags.cnn2_filters1),
            utils.parse(flags.cnn2_filters2),
            utils.parse(flags.cnn2_kernel_sizes)):

        branch1 = utils.conv2d_bn(net, filters1, (1, 1), scale=flags.bn_scale)

        branch2 = utils.conv2d_bn(net, filters1, (1, 1), scale=flags.bn_scale)
        branch2 = utils.conv2d_bn(branch2,
                                  filters1, (kernel_size, 1),
                                  scale=flags.bn_scale)

        branch3 = utils.conv2d_bn(net, filters1, (1, 1), scale=flags.bn_scale)
        branch3 = utils.conv2d_bn(branch3,
                                  filters1, (kernel_size, 1),
                                  scale=flags.bn_scale)
        branch3 = utils.conv2d_bn(branch3,
                                  filters1, (kernel_size, 1),
                                  scale=flags.bn_scale)

        net = tf.keras.layers.concatenate([branch1, branch2, branch3])
        # [batch, time, 1, filters*4]
        net = utils.conv2d_bn(net, filters2, (1, 1), scale=flags.bn_scale)
        # [batch, time, 1, filters2]

        if stride > 1:
            net = tf.keras.layers.MaxPooling2D((3, 1),
                                               strides=(stride, 1))(net)

    net = tf.keras.layers.GlobalAveragePooling2D()(net)
    # [batch, filters*4]
    net = tf.keras.layers.Dropout(flags.dropout)(net)
    net = tf.keras.layers.Dense(flags.label_count)(net)
    if flags.return_softmax:
        net = tf.keras.layers.Activation('softmax')(net)
    return tf.keras.Model(input_audio, net)
Example #16
0
def model(flags):
    """CNN model.

  It is based on paper:
  Convolutional Neural Networks for Small-footprint Keyword Spotting
  http://www.isca-speech.org/archive/interspeech_2015/papers/i15_1478.pdf
  Model topology is similar with "Hello Edge: Keyword Spotting on
  Microcontrollers" https://arxiv.org/pdf/1711.07128.pdf

  Args:
    flags: data/model parameters

  Returns:
    Keras model for training
  """

    input_audio = tf.keras.layers.Input(shape=modes.get_input_data_shape(
        flags, modes.Modes.TRAINING),
                                        batch_size=flags.batch_size)
    net = input_audio

    if flags.preprocess == 'raw':
        # it is a self contained model, user need to feed raw audio only
        net = speech_features.SpeechFeatures(
            speech_features.SpeechFeatures.get_params(flags))(net)

    if flags.quantize:
        net = quantize_layer.QuantizeLayer(
            AllValuesQuantizer(num_bits=8,
                               per_axis=False,
                               symmetric=False,
                               narrow_range=False))(net)

    net = tf.keras.backend.expand_dims(net)
    for filters, kernel_size, activation, dilation_rate, strides in zip(
            utils.parse(flags.cnn_filters), utils.parse(flags.cnn_kernel_size),
            utils.parse(flags.cnn_act), utils.parse(flags.cnn_dilation_rate),
            utils.parse(flags.cnn_strides)):
        net = stream.Stream(cell=quantize.quantize_layer(
            tf.keras.layers.Conv2D(filters=filters,
                                   kernel_size=kernel_size,
                                   dilation_rate=dilation_rate,
                                   activation='linear',
                                   strides=strides), flags.quantize,
            quantize.NoOpActivationConfig(['kernel'], ['activation'], False)),
                            pad_time_dim='causal',
                            use_one_step=False)(net)
        net = quantize.quantize_layer(
            tf.keras.layers.BatchNormalization(),
            default_8bit_quantize_configs.NoOpQuantizeConfig())(net)
        net = quantize.quantize_layer(
            tf.keras.layers.Activation(activation))(net)

    net = stream.Stream(cell=quantize.quantize_layer(
        tf.keras.layers.Flatten(), apply_quantization=flags.quantize))(net)

    net = tf.keras.layers.Dropout(rate=flags.dropout1)(net)

    for units, activation in zip(utils.parse(flags.units2),
                                 utils.parse(flags.act2)):
        net = quantize.quantize_layer(tf.keras.layers.Dense(
            units=units, activation=activation),
                                      apply_quantization=flags.quantize)(net)

    net = quantize.quantize_layer(
        tf.keras.layers.Dense(units=flags.label_count),
        apply_quantization=flags.quantize)(net)
    if flags.return_softmax:
        net = quantize.quantize_layer(tf.keras.layers.Activation('softmax'),
                                      apply_quantization=flags.quantize)(net)
    return tf.keras.Model(input_audio, net)
Example #17
0
def model(flags):
  """Inception resnet model.

  It is based on paper:
  Inception-v4, Inception-ResNet and the Impact of
     Residual Connections on Learning https://arxiv.org/abs/1602.07261
  Args:
    flags: data/model parameters

  Returns:
    Keras model for training
  """
  input_audio = tf.keras.layers.Input(
      shape=modes.get_input_data_shape(flags, modes.Modes.TRAINING),
      batch_size=flags.batch_size)
  net = input_audio

  if flags.preprocess == 'raw':
    # it is a self contained model, user need to feed raw audio only
    net = speech_features.SpeechFeatures(
        speech_features.SpeechFeatures.get_params(flags))(
            net)

  # [batch, time, feature]
  net = tf.keras.backend.expand_dims(net, axis=2)
  # [batch, time, 1, feature]

  for filters, kernel_size, stride in zip(
      utils.parse(flags.cnn1_filters), utils.parse(flags.cnn1_kernel_sizes),
      utils.parse(flags.cnn1_strides)):
    net = utils.conv2d_bn(
        net, filters, (kernel_size, 1), scale=flags.bn_scale, padding='valid')
    if stride > 1:
      net = tf.keras.layers.MaxPooling2D((3, 1), strides=(stride, 1))(net)
    # [batch, time, 1, filters]

  for stride, scale, filters_branch0, filters_branch1, filters_branch2, kernel_size in zip(
      utils.parse(flags.cnn2_strides), utils.parse(flags.cnn2_scales),
      utils.parse(flags.cnn2_filters_branch0),
      utils.parse(flags.cnn2_filters_branch1),
      utils.parse(flags.cnn2_filters_branch2),
      utils.parse(flags.cnn2_kernel_sizes)):
    net = inception_resnet_block(
        net,
        scale,
        filters_branch0,
        filters_branch1,
        kernel_size,
        bn_scale=flags.bn_scale)
    net = utils.conv2d_bn(
        net, filters_branch2, (1, 1), scale=flags.bn_scale, padding='valid')
    if stride > 1:
      net = tf.keras.layers.MaxPooling2D((3, 1),
                                         strides=(stride, 1),
                                         padding='valid')(
                                             net)
    # [batch, time, 1, filters]

  net = tf.keras.layers.GlobalAveragePooling2D()(net)
  # [batch, filters]
  net = tf.keras.layers.Dropout(flags.dropout)(net)
  net = tf.keras.layers.Dense(flags.label_count)(net)
  if flags.return_softmax:
    net = tf.keras.layers.Activation('softmax')(net)
  return tf.keras.Model(input_audio, net)
Example #18
0
    def get_data(self, how_many, offset, flags, background_frequency,
                 background_volume_range, time_shift, mode, resample_offset,
                 volume_augmentation_offset, sess):
        """Gather samples from the data set, applying transformations as needed.

    When the mode is 'training', a random selection of samples will be returned,
    otherwise the first N clips in the partition will be used. This ensures that
    validation always uses the same samples, reducing noise in the metrics.

    Args:
      how_many: Desired number of samples to return. -1 means the entire
        contents of this partition.
      offset: Where to start when fetching deterministically.
      flags: data and model parameters, described at model_train.py
      background_frequency: How many clips will have background noise, 0.0 to
        1.0.
      background_volume_range: How loud the background noise will be.
      time_shift: How much to randomly shift the clips by in time.
        It shifts audio data in range from -time_shift to time_shift.
      mode: Which partition to use, must be 'training', 'validation', or
        'testing'.
      resample_offset: resample input signal - stretch it or squeeze by 0..0.15
        If 0 - then not resampling.
      volume_augmentation_offset: it is used for raw audio volume control.
        During training volume multiplier will be sampled from
        1.0 - volume_augmentation_offset ... 1.0 + volume_augmentation_offset
      sess: TensorFlow session that was active when processor was created.

    Returns:
      List of sample data for the transformed samples, and list of label indexes

    Raises:
      ValueError: If background samples are too short.
    """
        # Pick one of the partitions to choose samples from.
        candidates = self.data_index[mode]
        if how_many == -1:
            sample_count = len(candidates)
        else:
            if flags.pick_deterministically and mode == 'training':
                # it is a special case:
                sample_count = how_many
            else:
                sample_count = max(0, min(how_many, len(candidates) - offset))

        # Data and labels will be populated and returned.
        input_data_shape = modes.get_input_data_shape(flags,
                                                      modes.Modes.TRAINING)
        data = np.zeros((sample_count, ) + input_data_shape)
        labels = np.zeros(sample_count)
        desired_samples = flags.desired_samples
        use_background = self.background_data and (mode == 'training')
        pick_deterministically = (mode !=
                                  'training') or flags.pick_deterministically
        # Use the processing graph we created earlier to repeatedly to generate the
        # final output sample data we'll use in training.
        for i in xrange(offset, offset + sample_count):
            # Pick which audio sample to use.
            if how_many == -1 or pick_deterministically:
                # during inference offset is 0,
                # but during training offset can be 0 or
                # training_step * batch_size, so 'i' can go beyond array size
                sample_index = i % len(candidates)
            else:
                sample_index = np.random.randint(len(candidates))
            sample = candidates[sample_index]
            # If we're time shifting, set up the offset for this sample.
            if time_shift > 0:
                time_shift_amount = np.random.randint(-time_shift, time_shift)
            else:
                time_shift_amount = 0
            if time_shift_amount > 0:
                time_shift_padding = [[time_shift_amount, 0], [0, 0]]
                time_shift_offset = [0, 0]
            else:
                time_shift_padding = [[0, -time_shift_amount], [0, 0]]
                time_shift_offset = [-time_shift_amount, 0]

            resample = 1.0
            if mode == 'training' and resample_offset != 0.0:
                resample = np.random.uniform(low=resample - resample_offset,
                                             high=resample + resample_offset)
            input_dict = {
                self.wav_filename_placeholder_: sample['file'],
                self.time_shift_padding_placeholder_: time_shift_padding,
                self.time_shift_offset_placeholder_: time_shift_offset,
                self.foreground_resampling_placeholder_: resample,
            }
            # Choose a section of background noise to mix in.
            if use_background:
                background_index = np.random.randint(len(self.background_data))
                background_samples = self.background_data[background_index]
                if len(background_samples) <= flags.desired_samples:
                    raise ValueError(
                        'Background sample is too short! Need more than %d'
                        ' samples but only %d were found' %
                        (flags.desired_samples, len(background_samples)))
                background_offset = np.random.randint(
                    0,
                    len(background_samples) - flags.desired_samples)
                background_clipped = background_samples[background_offset:(
                    background_offset + desired_samples)]
                background_reshaped = background_clipped.reshape(
                    [desired_samples, 1])
                if np.random.uniform(0, 1) < background_frequency:
                    background_volume = np.random.uniform(
                        0, background_volume_range)
                else:
                    background_volume = 0
            else:
                background_reshaped = np.zeros([desired_samples, 1])
                background_volume = 0
            input_dict[self.background_data_placeholder_] = background_reshaped
            input_dict[self.background_volume_placeholder_] = background_volume
            # If we want silence, mute out the main sample but leave the background.
            if sample['label'] == SILENCE_LABEL:
                input_dict[self.foreground_volume_placeholder_] = 0
            else:
                foreground_volume = 1.0  # multiplier of audio signal
                # in training mode produce audio data with different volume
                if mode == 'training' and volume_augmentation_offset != 0.0:
                    foreground_volume = np.random.uniform(
                        low=foreground_volume - volume_augmentation_offset,
                        high=foreground_volume + volume_augmentation_offset)

                input_dict[
                    self.foreground_volume_placeholder_] = foreground_volume
            # Run the graph to produce the output audio.
            data_tensor = sess.run(self.output_, feed_dict=input_dict)
            data[i - offset, :] = data_tensor
            label_index = self.word_to_index[sample['label']]
            labels[i - offset] = label_index
        return data, labels
Example #19
0
def model(flags):
    """Xception model.

  It is based on papers:
  Xception: Deep Learning with Depthwise Separable Convolutions
      https://arxiv.org/abs/1610.02357
  MatchboxNet: 1D Time-Channel Separable Convolutional
  Neural Network Architecture for Speech Commands Recognition
  https://arxiv.org/pdf/2004.08531
  Args:
    flags: data/model parameters

  Returns:
    Keras model for training
  """
    input_audio = tf.keras.layers.Input(shape=modes.get_input_data_shape(
        flags, modes.Modes.TRAINING),
                                        batch_size=flags.batch_size)
    net = input_audio

    if flags.preprocess == 'raw':
        # it is a self contained model, user need to feed raw audio only
        net = speech_features.SpeechFeatures(
            speech_features.SpeechFeatures.get_params(flags))(net)

    # [batch, time, feature]
    net = tf.keras.backend.expand_dims(net, axis=2)
    # [batch, time, 1, feature]

    # conv block
    for kernel_size, filters in zip(utils.parse(flags.cnn1_kernel_sizes),
                                    utils.parse(flags.cnn1_filters)):
        net = tf.keras.layers.Conv2D(filters, (kernel_size, 1),
                                     use_bias=False)(net)
        net = tf.keras.layers.BatchNormalization(scale=flags.bn_scale)(net)
        net = tf.keras.layers.Activation('relu')(net)
        # [batch, time, 1, feature]

    if flags.stride1 > 1:
        net = tf.keras.layers.MaxPooling2D((3, 1),
                                           strides=(flags.stride1, 1),
                                           padding='valid')(net)

    net = block(net, utils.parse(flags.cnn2_kernel_sizes),
                utils.parse(flags.cnn2_filters), flags.dropout, flags.bn_scale)
    if flags.stride2 > 1:
        net = tf.keras.layers.MaxPooling2D((3, 1),
                                           strides=(flags.stride2, 1),
                                           padding='valid')(net)

    net = block(net, utils.parse(flags.cnn3_kernel_sizes),
                utils.parse(flags.cnn3_filters), flags.dropout, flags.bn_scale)
    if flags.stride3 > 1:
        net = tf.keras.layers.MaxPooling2D((3, 1),
                                           strides=(flags.stride3, 1),
                                           padding='valid')(net)

    net = block(net, utils.parse(flags.cnn4_kernel_sizes),
                utils.parse(flags.cnn4_filters), flags.dropout, flags.bn_scale)
    if flags.stride4 > 1:
        net = tf.keras.layers.MaxPooling2D((3, 1),
                                           strides=(flags.stride4, 1),
                                           padding='valid')(net)

    net = tf.keras.layers.GlobalAveragePooling2D()(net)
    # [batch, filters]
    net = tf.keras.layers.Dropout(flags.dropout)(net)
    for units in utils.parse(flags.units2):
        net = tf.keras.layers.Dense(units=units,
                                    activation=None,
                                    use_bias=False)(net)
        net = tf.keras.layers.BatchNormalization(scale=flags.bn_scale)(net)
        net = tf.keras.layers.Activation('relu')(net)

    net = tf.keras.layers.Dense(flags.label_count)(net)
    if flags.return_softmax:
        net = tf.keras.layers.Activation('softmax')(net)
    # [batch, label_count]
    return tf.keras.Model(input_audio, net)
Example #20
0
def main(_):
    # Update flags
    flags = model_flags.update_flags(FLAGS)

    if flags.train:
        # Create model folders where logs and model will be stored
        os.makedirs(flags.train_dir)
        os.mkdir(flags.summaries_dir)

        # Model training
        train.train(flags)
    else:
        if not os.path.isdir(flags.train_dir):
            raise ValueError(
                'model is not trained set "--train 1" and retrain it')

    # write all flags settings into json
    with open(os.path.join(flags.train_dir, 'flags.json'), 'wt') as f:
        json.dump(flags.__dict__, f)

    # convert to SavedModel
    test.convert_model_saved(flags, 'non_stream',
                             modes.Modes.NON_STREAM_INFERENCE)
    try:
        test.convert_model_saved(flags, 'stream_state_internal',
                                 modes.Modes.STREAM_INTERNAL_STATE_INFERENCE)
    except (ValueError, IndexError) as e:
        logging.info('FAILED to run TF streaming: %s', e)

    logging.info('run TF non streaming model accuracy evaluation')
    # with TF
    folder_name = 'tf'
    test.tf_non_stream_model_accuracy(flags, folder_name)

    # with TF.
    # We can apply non stream model on stream data, by running inference
    # every 200ms (for example), so that total latency will be similar with
    # streaming model which is executed every 20ms.
    # To measure the impact of sampling on model accuracy,
    # we introduce time_shift_ms during accuracy evaluation.
    # Convert milliseconds to samples:
    time_shift_samples = int(
        (flags.time_shift_ms * flags.sample_rate) / model_flags.MS_PER_SECOND)
    test.tf_non_stream_model_accuracy(
        flags,
        folder_name,
        time_shift_samples,
        accuracy_name='tf_non_stream_model_sampling_stream_accuracy.txt')

    name2opt = {
        '': None,
        'quantize_opt_for_size_': [tf.lite.Optimize.DEFAULT],
    }

    for opt_name, optimizations in name2opt.items():

        if (opt_name and flags.feature_type == 'mfcc_tf'
                and flags.preprocess == 'raw'):
            logging.info(
                'feature type mfcc_tf needs quantization aware training '
                'for quantization - it is not implemented')
            continue

        folder_name = opt_name + 'tflite_non_stream'
        file_name = 'non_stream.tflite'
        mode = modes.Modes.NON_STREAM_INFERENCE
        test.convert_model_tflite(flags,
                                  folder_name,
                                  mode,
                                  file_name,
                                  optimizations=optimizations)
        test.tflite_non_stream_model_accuracy(flags, folder_name, file_name)

        # these models are using bi-rnn, so they are non streamable by default
        # also models using striding or pooling are not supported for streaming now
        non_streamable_models = {'att_mh_rnn', 'att_rnn', 'tc_resnet'}

        model_is_streamable = True
        if flags.model_name in non_streamable_models:
            model_is_streamable = False
        # below models can use striding in time dimension,
        # but this is currently unsupported
        elif flags.model_name == 'cnn':
            for strides in model_utils.parse(flags.cnn_strides):
                if strides[0] > 1:
                    model_is_streamable = False
                    break
        elif flags.model_name == 'ds_cnn':
            if model_utils.parse(flags.cnn1_strides)[0] > 1:
                model_is_streamable = False
            for strides in model_utils.parse(flags.dw2_strides):
                if strides[0] > 1:
                    model_is_streamable = False
                    break

        # set input data shape for testing inference in streaming mode
        flags.data_shape = modes.get_input_data_shape(
            flags, modes.Modes.STREAM_EXTERNAL_STATE_INFERENCE)

        # if model can be streamed, then run conversion/evaluation in streaming mode
        if model_is_streamable:
            # ---------------- TF streaming model accuracy evaluation ----------------
            # Streaming model with external state evaluation using TF with state reset
            if not opt_name:
                logging.info(
                    'run TF evalution only without optimization/quantization')
                try:
                    folder_name = 'tf'
                    test.tf_stream_state_external_model_accuracy(
                        flags,
                        folder_name,
                        accuracy_name=
                        'stream_state_external_model_accuracy_sub_set_reset1.txt',
                        reset_state=True
                    )  # with state reset between test sequences

                    # Streaming (with external state) evaluation using TF no state reset
                    test.tf_stream_state_external_model_accuracy(
                        flags,
                        folder_name,
                        accuracy_name=
                        'stream_state_external_model_accuracy_sub_set_reset0.txt',
                        reset_state=False)  # without state reset

                    # Streaming (with internal state) evaluation using TF no state reset
                    test.tf_stream_state_internal_model_accuracy(
                        flags, folder_name)
                except (ValueError, IndexError) as e:
                    logging.info('FAILED to run TF streaming: %s', e)

            logging.info('run TFlite streaming model accuracy evaluation')
            try:
                # convert model to TFlite
                folder_name = opt_name + 'tflite_stream_state_external'
                file_name = 'stream_state_external.tflite'
                mode = modes.Modes.STREAM_EXTERNAL_STATE_INFERENCE
                test.convert_model_tflite(flags,
                                          folder_name,
                                          mode,
                                          file_name,
                                          optimizations=optimizations)

                # Streaming model accuracy evaluation with TFLite with state reset
                test.tflite_stream_state_external_model_accuracy(
                    flags,
                    folder_name,
                    file_name,
                    accuracy_name=
                    'tflite_stream_state_external_model_accuracy_reset1.txt',
                    reset_state=True)

                # Streaming model accuracy evaluation with TFLite without state reset
                test.tflite_stream_state_external_model_accuracy(
                    flags,
                    folder_name,
                    file_name,
                    accuracy_name=
                    'tflite_stream_state_external_model_accuracy_reset0.txt',
                    reset_state=False)
            except (ValueError, IndexError) as e:
                logging.info('FAILED to run TFLite streaming: %s', e)
Example #21
0
def model(flags):
    """SVDF model with residual connections.

  This model is based on decomposition of a densely connected ops
  into low rank filters.
  It is based on paper
  END-TO-END STREAMING KEYWORD SPOTTING https://arxiv.org/pdf/1812.02802.pdf
  In addition we added residual connection
  Args:
    flags: data/model parameters

  Returns:
    Keras model for training
  """

    input_audio = tf.keras.layers.Input(shape=modes.get_input_data_shape(
        flags, modes.Modes.TRAINING),
                                        batch_size=flags.batch_size)
    net = input_audio

    if flags.preprocess == 'raw':
        # it is a self contained model, user need to feed raw audio only
        net = speech_features.SpeechFeatures(
            speech_features.SpeechFeatures.get_params(flags))(net)

    blocks_pool = parse(flags.blocks_pool)
    if len(blocks_pool) != 3:
        raise ValueError('number of pooling blocks has to be 3, but get: ',
                         len(blocks_pool))

    # for streaming mode it is better to use causal padding
    padding = 'causal' if flags.svdf_pad else 'valid'

    # first residual block
    number_of_blocks = len(parse(flags.block1_units1))
    activations = [flags.activation] * number_of_blocks
    activations[-1] = 'linear'  # last layer is linear
    residual = net
    for i, (units1, memory_size, activation) in enumerate(
            zip(parse(flags.block1_units1), parse(flags.block1_memory_size),
                activations)):
        # [batch, time, feature]
        net = svdf.Svdf(units1=units1,
                        memory_size=memory_size,
                        units2=-1,
                        dropout=flags.svdf_dropout,
                        activation=activation,
                        pad=padding,
                        use_bias=flags.svdf_use_bias,
                        use_batch_norm=flags.use_batch_norm,
                        bn_scale=flags.bn_scale,
                        name='svdf_1_%d' % i)(net)

    # number of channels in the last layer
    units1_last = parse(flags.block1_units1)[-1]

    # equivalent to 1x1 convolution
    residual = tf.keras.layers.Dense(units1_last, use_bias=False)(residual)
    residual = tf.keras.layers.BatchNormalization(
        scale=flags.bn_scale)(residual)

    # residual connection
    net = tf.keras.layers.Add()([net, residual])
    # [batch, time, feature]
    net = tf.keras.layers.Activation(flags.activation)(net)
    net = tf.keras.layers.MaxPool1D(3, strides=blocks_pool[0],
                                    padding='valid')(net)

    # second residual block
    number_of_blocks = len(parse(flags.block2_units1))
    activations = [flags.activation] * number_of_blocks
    activations[-1] = 'linear'  # last layer is linear
    residual = net
    for i, (units1, memory_size, activation) in enumerate(
            zip(parse(flags.block2_units1), parse(flags.block2_memory_size),
                activations)):
        # [batch, time, feature]
        net = svdf.Svdf(units1=units1,
                        memory_size=memory_size,
                        units2=-1,
                        dropout=flags.svdf_dropout,
                        activation=activation,
                        pad=padding,
                        use_bias=flags.svdf_use_bias,
                        use_batch_norm=flags.use_batch_norm,
                        bn_scale=flags.bn_scale,
                        name='svdf_2_%d' % i)(net)

    # number of channels in the last layer
    units1_last = parse(flags.block2_units1)[-1]

    # equivalent to 1x1 convolution
    residual = tf.keras.layers.Dense(units1_last, use_bias=False)(residual)
    residual = tf.keras.layers.BatchNormalization(
        scale=flags.bn_scale)(residual)

    # residual connection
    net = tf.keras.layers.Add()([net, residual])
    net = tf.keras.layers.Activation(flags.activation)(net)
    # [batch, time, feature]
    net = tf.keras.layers.MaxPool1D(3, strides=blocks_pool[1],
                                    padding='valid')(net)

    # third residual block
    number_of_blocks = len(parse(flags.block3_units1))
    activations = [flags.activation] * number_of_blocks
    activations[-1] = 'linear'  # last layer is linear
    residual = net
    for i, (units1, memory_size, activation) in enumerate(
            zip(parse(flags.block3_units1), parse(flags.block3_memory_size),
                activations)):
        net = svdf.Svdf(units1=units1,
                        memory_size=memory_size,
                        units2=-1,
                        dropout=flags.svdf_dropout,
                        activation=activation,
                        pad=padding,
                        use_bias=flags.svdf_use_bias,
                        use_batch_norm=flags.use_batch_norm,
                        bn_scale=flags.bn_scale,
                        name='svdf_3_%d' % i)(net)

    # number of channels in the last layer
    units1_last = parse(flags.block3_units1)[-1]

    # equivalent to 1x1 convolution
    residual = tf.keras.layers.Dense(units1_last, use_bias=False)(residual)
    residual = tf.keras.layers.BatchNormalization(
        scale=flags.bn_scale)(residual)

    # residual connection
    net = tf.keras.layers.Add()([net, residual])
    net = tf.keras.layers.Activation(flags.activation)(net)
    net = tf.keras.layers.MaxPool1D(3, strides=blocks_pool[2],
                                    padding='valid')(net)
    # [batch, time, feature]

    # convert all feature to one vector
    if flags.flatten:
        net = tf.keras.layers.Flatten()(net)
    else:
        net = tf.keras.layers.GlobalAveragePooling1D()(net)

    # [batch, feature]
    net = tf.keras.layers.Dropout(rate=flags.dropout1)(net)

    for units in parse(flags.units2):
        net = tf.keras.layers.Dense(units=units,
                                    activation=flags.activation)(net)

    net = tf.keras.layers.Dense(units=flags.label_count)(net)
    if flags.return_softmax:
        net = tf.keras.layers.Activation('softmax')(net)
    return tf.keras.Model(input_audio, net)
Example #22
0
def model(flags):
    """Depthwise convolutional model.

  It is based on paper:
  MobileNets: Efficient Convolutional Neural Networks for
  Mobile Vision Applications https://arxiv.org/abs/1704.04861
  Model topology is similar with "Hello Edge: Keyword Spotting on
  Microcontrollers" https://arxiv.org/pdf/1711.07128.pdf
  Args:
    flags: data/model parameters

  Returns:
    Keras model for training
  """

    input_audio = tf.keras.layers.Input(shape=modes.get_input_data_shape(
        flags, modes.Modes.TRAINING),
                                        batch_size=flags.batch_size)
    net = input_audio

    if flags.preprocess == 'raw':
        # it is a self contained model, user need to feed raw audio only
        net = speech_features.SpeechFeatures(
            speech_features.SpeechFeatures.get_params(flags))(net)

    net = tf.keras.backend.expand_dims(net)

    net = stream.Stream(cell=tf.keras.layers.Conv2D(
        kernel_size=utils.parse(flags.cnn1_kernel_size),
        dilation_rate=utils.parse(flags.cnn1_dilation_rate),
        filters=flags.cnn1_filters,
        padding=flags.cnn1_padding,
        strides=utils.parse(flags.cnn1_strides)))(net)
    net = tf.keras.layers.BatchNormalization(momentum=flags.bn_momentum,
                                             center=flags.bn_center,
                                             scale=flags.bn_scale,
                                             renorm=flags.bn_renorm)(net)
    net = tf.keras.layers.Activation('relu')(net)

    for kernel_size, dw2_act, dilation_rate, strides, filters, cnn2_act in zip(
            utils.parse(flags.dw2_kernel_size), utils.parse(flags.dw2_act),
            utils.parse(flags.dw2_dilation_rate),
            utils.parse(flags.dw2_strides), utils.parse(flags.cnn2_filters),
            utils.parse(flags.cnn2_act)):
        net = stream.Stream(
            cell=tf.keras.layers.DepthwiseConv2D(kernel_size=kernel_size,
                                                 dilation_rate=dilation_rate,
                                                 padding=flags.dw2_padding,
                                                 strides=strides))(net)
        net = tf.keras.layers.BatchNormalization(momentum=flags.bn_momentum,
                                                 center=flags.bn_center,
                                                 scale=flags.bn_scale,
                                                 renorm=flags.bn_renorm)(net)
        net = tf.keras.layers.Activation(dw2_act)(net)
        net = tf.keras.layers.Conv2D(kernel_size=(1, 1), filters=filters)(net)
        net = tf.keras.layers.BatchNormalization(momentum=flags.bn_momentum,
                                                 center=flags.bn_center,
                                                 scale=flags.bn_scale,
                                                 renorm=flags.bn_renorm)(net)
        net = tf.keras.layers.Activation(cnn2_act)(net)

    net = stream.Stream(cell=tf.keras.layers.AveragePooling2D(
        pool_size=(int(net.shape[1]), int(net.shape[2]))))(net)

    net = stream.Stream(cell=tf.keras.layers.Flatten())(net)
    net = tf.keras.layers.Dropout(rate=flags.dropout1)(net)

    net = tf.keras.layers.Dense(units=flags.label_count)(net)
    if flags.return_softmax:
        net = tf.keras.layers.Activation('softmax')(net)
    return tf.keras.Model(input_audio, net)
Example #23
0
def model(flags):
    """BC-ResNet model.

  It is based on paper
  Broadcasted Residual Learning for Efficient Keyword Spotting
  https://arxiv.org/pdf/2106.04140.pdf

  Args:
    flags: data/model parameters

  Returns:
    Keras model for training

  Raises:
    ValueError: if any of input list has different length from any other;
    or if padding is not supported
  """

    dropouts = utils.parse(flags.dropouts)
    filters = utils.parse(flags.filters)
    blocks_n = utils.parse(flags.blocks_n)
    strides = utils.parse(flags.strides)
    dilations = utils.parse(flags.dilations)

    for l in (dropouts, filters, strides, dilations):
        if len(blocks_n) != len(l):
            raise ValueError('all input lists have to be the same length '
                             'but get %s and %s ' % (blocks_n, l))

    input_audio = tf.keras.layers.Input(shape=modes.get_input_data_shape(
        flags, modes.Modes.TRAINING),
                                        batch_size=flags.batch_size)
    net = input_audio

    if flags.preprocess == 'raw':
        # it is a self contained model, user need to feed raw audio only
        net = speech_features.SpeechFeatures(
            speech_features.SpeechFeatures.get_params(flags))(net)

    # make it [batch, time, feature, 1]
    net = tf.keras.backend.expand_dims(net, axis=3)

    if flags.paddings == 'same':
        net = tf.keras.layers.Conv2D(filters=flags.first_filters,
                                     kernel_size=5,
                                     strides=(1, 2),
                                     padding='same')(net)
    else:
        net = stream.Stream(cell=tf.keras.layers.Conv2D(
            filters=flags.first_filters,
            kernel_size=5,
            strides=(1, 2),
            padding='valid'),
                            use_one_step=True,
                            pad_time_dim=flags.paddings,
                            pad_freq_dim='same')(net)

    for n, n_filters, dilation, stride, dropout in zip(blocks_n, filters,
                                                       dilations, strides,
                                                       dropouts):
        net = TransitionBlock(n_filters,
                              dilation,
                              stride,
                              flags.paddings,
                              dropout,
                              sub_groups=flags.sub_groups)(net)
        for _ in range(n):
            net = NormalBlock(n_filters,
                              dilation,
                              1,
                              flags.paddings,
                              dropout,
                              sub_groups=flags.sub_groups)(net)

    if flags.paddings == 'same':
        net = tf.keras.layers.DepthwiseConv2D(kernel_size=5,
                                              padding='same')(net)
    else:
        net = stream.Stream(cell=tf.keras.layers.DepthwiseConv2D(
            kernel_size=5, padding='valid'),
                            use_one_step=True,
                            pad_time_dim=flags.paddings,
                            pad_freq_dim='same')(net)

    # average out frequency dim
    net = tf.keras.backend.mean(net, axis=2, keepdims=True)

    net = tf.keras.layers.Conv2D(filters=flags.last_filters,
                                 kernel_size=1,
                                 use_bias=False)(net)

    # average out time dim
    if flags.paddings == 'same':
        net = tf.keras.layers.GlobalAveragePooling2D(keepdims=True)(net)
    else:
        net = stream.Stream(cell=tf.keras.layers.GlobalAveragePooling2D(
            keepdims=True))(net)

    net = tf.keras.layers.Conv2D(filters=flags.label_count,
                                 kernel_size=1,
                                 use_bias=False)(net)
    # 1 and 2 dims are equal to 1
    net = tf.squeeze(net, [1, 2])

    if flags.return_softmax:
        net = tf.keras.layers.Activation('softmax')(net)
    return tf.keras.Model(input_audio, net)
def model(flags):
    """Mobilenet V2 model.

  It is based on paper:
  MobileNetV2: Inverted Residuals and Linear Bottlenecks
      https://arxiv.org/abs/1801.04381
  It is applied on sequence in time, so only 1D filters applied
  Args:
    flags: data/model parameters

  Returns:
    Keras model for training
  """
    input_audio = tf.keras.layers.Input(shape=modes.get_input_data_shape(
        flags, modes.Modes.TRAINING),
                                        batch_size=flags.batch_size)
    net = input_audio

    if flags.preprocess == 'raw':
        # it is a self contained model, user need to feed raw audio only
        net = speech_features.SpeechFeatures(
            speech_features.SpeechFeatures.get_params(flags))(net)

    # [batch, time, feature]
    net = tf.keras.backend.expand_dims(net, axis=2)
    # [batch, time, feature, 1]

    # it is conv_block
    net = tf.keras.layers.Conv2D(filters=flags.cnn1_filters,
                                 kernel_size=utils.parse(
                                     flags.cnn1_kernel_size),
                                 padding='valid',
                                 use_bias=False,
                                 strides=utils.parse(flags.cnn1_strides))(net)
    net = tf.keras.layers.BatchNormalization(scale=flags.bn_scale)(net)
    net = tf.keras.layers.ReLU(6.)(net)
    # [batch, time, feature, filters]

    for kernel_size, stride, filters, expansion in zip(
            utils.parse(flags.ds_kernel_size), utils.parse(flags.cnn_strides),
            utils.parse(flags.cnn_filters), utils.parse(flags.cnn_expansions)):
        # it is Inverted ResNet block
        net_input = net
        in_channels = tf.keras.backend.int_shape(net_input)[-1]

        net = tf.keras.layers.Conv2D(expansion * in_channels,
                                     kernel_size=1,
                                     padding='same',
                                     use_bias=False,
                                     activation=None)(net)
        net = tf.keras.layers.BatchNormalization(scale=flags.bn_scale)(net)
        net = tf.keras.layers.ReLU(6.)(net)
        # [batch, time, feature, filters]

        # depthwise
        net = tf.keras.layers.DepthwiseConv2D(kernel_size=kernel_size,
                                              strides=stride,
                                              activation=None,
                                              use_bias=False,
                                              padding='same')(net)
        net = tf.keras.layers.BatchNormalization(scale=flags.bn_scale)(net)
        net = tf.keras.layers.ReLU(6.)(net)

        # project
        net = tf.keras.layers.Conv2D(filters,
                                     kernel_size=1,
                                     padding='same',
                                     use_bias=False,
                                     activation=None)(net)
        net = tf.keras.layers.BatchNormalization()(net)

        if in_channels == filters and stride == (1, 1):
            net = tf.keras.layers.Add()([net_input, net])

    # [batch, time, feature, filters]
    net = tf.keras.layers.GlobalAveragePooling2D()(net)
    # [batch, filters]
    net = tf.keras.layers.Dropout(flags.dropout)(net)
    net = tf.keras.layers.Dense(flags.label_count)(net)
    if flags.return_softmax:
        net = tf.keras.layers.Activation('softmax')(net)
    return tf.keras.Model(input_audio, net)
Example #25
0
def model(flags):
    """MatchboxNet model.

  It is based on paper
  MatchboxNet: 1D Time-Channel Separable Convolutional Neural Network
  Architecture for Speech Commands Recognition
  https://arxiv.org/pdf/2004.08531.pdf

  Args:
    flags: data/model parameters

  Returns:
    Keras model for training

  Raises:
    ValueError: if any of input list has different length from any other;
    or if padding is not supported
  """

    ds_filters = parse(flags.ds_filters)
    ds_repeat = parse(flags.ds_repeat)
    ds_kernel_size = parse(flags.ds_kernel_size)
    ds_stride = parse(flags.ds_stride)
    ds_dilation = parse(flags.ds_dilation)
    ds_residual = parse(flags.ds_residual)
    ds_pool = parse(flags.ds_pool)
    ds_padding = parse(flags.ds_padding)
    ds_filter_separable = parse(flags.ds_filter_separable)

    for l in (ds_repeat, ds_kernel_size, ds_stride, ds_dilation, ds_residual,
              ds_pool, ds_padding, ds_filter_separable):
        if len(ds_filters) != len(l):
            raise ValueError('all input lists have to be the same length')

    input_audio = tf.keras.layers.Input(shape=modes.get_input_data_shape(
        flags, modes.Modes.TRAINING),
                                        batch_size=flags.batch_size)
    net = input_audio

    if flags.preprocess == 'raw':
        # it is a self contained model, user need to feed raw audio only
        net = speech_features.SpeechFeatures(
            speech_features.SpeechFeatures.get_params(flags))(net)

    # make it [batch, time, 1, feature]
    net = tf.keras.backend.expand_dims(net, axis=2)

    # encoder
    for filters, repeat, ksize, stride, sep, dilation, res, pool, pad in zip(
            ds_filters, ds_repeat, ds_kernel_size, ds_stride,
            ds_filter_separable, ds_dilation, ds_residual, ds_pool,
            ds_padding):
        net = resnet_block(net, repeat, ksize, filters, dilation, stride, sep,
                           res, pad, flags.dropout, flags.activation,
                           flags.ds_scale)
        if pool > 1:
            if flags.ds_max_pool:
                net = tf.keras.layers.MaxPooling2D(pool_size=(pool, 1),
                                                   strides=(pool, 1))(net)
            else:
                net = tf.keras.layers.AveragePooling2D(pool_size=(pool, 1),
                                                       strides=(pool, 1))(net)

    # decoder
    net = stream.Stream(cell=tf.keras.layers.GlobalAveragePooling2D())(net)

    net = tf.keras.layers.Flatten()(net)

    net = tf.keras.layers.Dense(units=flags.label_count)(net)

    if flags.return_softmax:
        net = tf.keras.layers.Activation('softmax')(net)
    return tf.keras.Model(input_audio, net)
Example #26
0
def model(flags):
    """BiRNN attention model.

  It is based on paper:
  A neural attention model for speech command recognition
  https://arxiv.org/pdf/1808.08929.pdf

  Depending on parameter rnn_type, model can be biLSTM or biGRU

  Args:
    flags: data/model parameters

  Returns:
    Keras model for training
  """

    rnn_types = {'lstm': tf.keras.layers.LSTM, 'gru': tf.keras.layers.GRU}

    if flags.rnn_type not in rnn_types:
        ValueError('not supported RNN type ', flags.rnn_type)
    rnn = rnn_types[flags.rnn_type]

    input_audio = tf.keras.layers.Input(shape=modes.get_input_data_shape(
        flags, modes.Modes.TRAINING),
                                        batch_size=flags.batch_size)
    net = input_audio

    if flags.preprocess == 'raw':
        # it is a self contained model, user need to feed raw audio only
        net = speech_features.SpeechFeatures(
            speech_features.SpeechFeatures.get_params(flags))(net)

    net = tf.keras.backend.expand_dims(net)
    for filters, kernel_size, activation, dilation_rate, strides in zip(
            parse(flags.cnn_filters), parse(flags.cnn_kernel_size),
            parse(flags.cnn_act), parse(flags.cnn_dilation_rate),
            parse(flags.cnn_strides)):
        net = tf.keras.layers.Conv2D(filters=filters,
                                     kernel_size=kernel_size,
                                     activation=activation,
                                     dilation_rate=dilation_rate,
                                     strides=strides,
                                     padding='same')(net)
        net = tf.keras.layers.BatchNormalization()(net)

    shape = net.shape
    # input net dimension: [batch, time, feature, channels]
    # reshape dimension: [batch, time, feature * channels]
    # so that GRU/RNN can process it
    net = tf.keras.layers.Reshape((-1, shape[2] * shape[3]))(net)

    # dims: [batch, time, feature]
    for _ in range(flags.rnn_layers):
        net = tf.keras.layers.Bidirectional(
            rnn(flags.rnn_units, return_sequences=True, unroll=True))(net)
    feature_dim = net.shape[-1]
    middle = net.shape[1] // 2  # index of middle point of sequence

    # feature vector at middle point [batch, feature]
    mid_feature = net[:, middle, :]
    # apply one projection layer with the same dim as input feature
    query = tf.keras.layers.Dense(feature_dim)(mid_feature)

    # attention weights [batch, time]
    att_weights = tf.keras.layers.Dot(axes=[1, 2])([query, net])
    att_weights = tf.keras.layers.Softmax(name='attSoftmax')(att_weights)

    # apply attention weights [batch, feature]
    net = tf.keras.layers.Dot(axes=[1, 1])([att_weights, net])

    net = tf.keras.layers.Dropout(rate=flags.dropout1)(net)

    for units, activation in zip(parse(flags.units2), parse(flags.act2)):
        net = tf.keras.layers.Dense(units=units, activation=activation)(net)

    net = tf.keras.layers.Dense(units=flags.label_count)(net)
    return tf.keras.Model(input_audio, net)