def get_labels(config_path, load_path): config = parse_config("config", config_path) temp_model_path = config_path + ".model" #Restore the best model labeler = SequenceLabeler.load(load_path) #Label the data in the 'label_path' section if config["path_label"] is not None: for path_test in config["path_label"].strip().split(":"): data_test = read_input_files(path_test) results_test, processed_data, incorrect_counter, sent_count = process_sentences_labelling( data_test, labeler, is_training=False, learningrate=0.0, config=config, name="test" + str(i), ReturnData=True) evaluator_file = open( '/content/drive/My Drive/beamsearch_remove_60', 'w') for j in range(len(processed_data)): evaluator_file.write(processed_data[j] + "\n") evaluator_file.close() print('Number of incorrect tokens: ', incorrect_counter) print('Number of sentences: ', sent_count)
def run_experiment(config_path): config = parse_config("config", config_path) temp_model_path = config_path + ".model" if "random_seed" in config: random.seed(config["random_seed"]) numpy.random.seed(config["random_seed"]) for key, val in config.items(): print(str(key) + ": " + str(val)) data_train, data_dev, data_test = None, None, None if config["path_train"] != None and len(config["path_train"]) > 0: data_train = read_input_files(config["path_train"], config["max_train_sent_length"]) if config["path_dev"] != None and len(config["path_dev"]) > 0: data_dev = read_input_files(config["path_dev"]) if config["path_test"] != None and len(config["path_test"]) > 0: data_test = [] for path_test in config["path_test"].strip().split(":"): data_test += read_input_files(path_test) if config["load"] != None and len(config["load"]) > 0: labeler = SequenceLabeler.load(config["load"]) else: labeler = SequenceLabeler(config) labeler.build_vocabs(data_train, data_dev, data_test, config["preload_vectors"]) labeler.construct_network() labeler.initialize_session() if config["preload_vectors"] != None: labeler.preload_word_embeddings(config["preload_vectors"]) print("parameter_count: " + str(labeler.get_parameter_count())) print("parameter_count_without_word_embeddings: " + str(labeler.get_parameter_count_without_word_embeddings())) if data_train != None: model_selector = config["model_selector"].split(":")[0] model_selector_type = config["model_selector"].split(":")[1] best_selector_value = 0.0 best_epoch = -1 learningrate = config["learningrate"] for epoch in range(config["epochs"]): print("EPOCH: " + str(epoch)) print("current_learningrate: " + str(learningrate)) random.shuffle(data_train) results_train = process_sentences(data_train, labeler, is_training=True, learningrate=learningrate, config=config, name="train") if data_dev != None: results_dev = process_sentences(data_dev, labeler, is_training=False, learningrate=0.0, config=config, name="dev") if math.isnan(results_dev["dev_cost_sum"]) or math.isinf( results_dev["dev_cost_sum"]): sys.stderr.write("ERROR: Cost is NaN or Inf. Exiting.\n") break if (epoch == 0 or (model_selector_type == "high" and results_dev[model_selector] > best_selector_value) or (model_selector_type == "low" and results_dev[model_selector] < best_selector_value)): best_epoch = epoch best_selector_value = results_dev[model_selector] labeler.saver.save( labeler.session, temp_model_path, latest_filename=os.path.basename(temp_model_path) + ".checkpoint") print("best_epoch: " + str(best_epoch)) if config["stop_if_no_improvement_for_epochs"] > 0 and ( epoch - best_epoch ) >= config["stop_if_no_improvement_for_epochs"]: break if (epoch - best_epoch) > 3: learningrate *= config["learningrate_decay"] while config["garbage_collection"] == True and gc.collect() > 0: pass if data_dev != None and best_epoch >= 0: # loading the best model so far labeler.saver.restore(labeler.session, temp_model_path) os.remove(temp_model_path + ".checkpoint") os.remove(temp_model_path + ".data-00000-of-00001") os.remove(temp_model_path + ".index") os.remove(temp_model_path + ".meta") if config["save"] is not None and len(config["save"]) > 0: labeler.save(config["save"]) if config["path_test"] is not None: i = 0 for path_test in config["path_test"].strip().split(":"): data_test = read_input_files(path_test) results_test = process_sentences(data_test, labeler, is_training=False, learningrate=0.0, config=config, name="test" + str(i)) i += 1
def run_experiment(config_path): config = parse_config("config", config_path) temp_model_path = config_path + ".model" if "random_seed" in config: random.seed(config["random_seed"]) numpy.random.seed(config["random_seed"]) for key, val in config.items(): print(str(key) + ": " + str(val)) data_train, data_dev, data_test = None, None, None if config["path_train"] != None and len(config["path_train"]) > 0: if config['alternating_training']: # implements dataset-switching, i.e. first trains on the 'main' dataset, then on the augmented dataset in similar sized chunks data_train, split_points = read_input_files( config["path_train"], config["max_train_sent_length"], return_splits=True) main_train = data_train[:split_points[0]] data_train = data_train[split_points[0]:] random.shuffle(data_train) # shuffle all augmented data data_train = main_train + data_train minibatch_size = split_points[0] minibatches = [] for batch_start_index in range(0, len(data_train), minibatch_size): minibatches += [ data_train[batch_start_index:batch_start_index + minibatch_size] ] if len(minibatches[-1]) < 0.5 * minibatch_size: minibatches[-2] = minibatches[-2] + minibatches[-1] minibatches = minibatches[: -1] # merge last minibatch with previous, if too small else: data_train = read_input_files(config["path_train"], config["max_train_sent_length"]) minibatches = [data_train] print("minibatch sizes: " + ", ".join([str(len(i)) for i in minibatches])) if config["path_dev"] != None and len(config["path_dev"]) > 0: data_dev = read_input_files(config["path_dev"]) if config["path_test"] != None and len(config["path_test"]) > 0: data_test = [] for path_test in config["path_test"].strip().split(":"): data_test += read_input_files(path_test) if config["load"] != None and len(config["load"]) > 0: labeler = SequenceLabeler.load(config["load"]) else: labeler = SequenceLabeler(config) labeler.build_vocabs(data_train, data_dev, data_test, config["preload_vectors"]) labeler.construct_network() labeler.initialize_session() if config["preload_vectors"] != None: labeler.preload_word_embeddings(config["preload_vectors"]) print("parameter_count: " + str(labeler.get_parameter_count())) print("parameter_count_without_word_embeddings: " + str(labeler.get_parameter_count_without_word_embeddings())) if data_train != None: model_selector = config["model_selector"].split(":")[0] model_selector_type = config["model_selector"].split(":")[1] no_improvement_for = 0 best_selector_value = 0.0 best_epoch = -1 learningrate = config["learningrate"] for epoch in range(config["epochs"]): print("EPOCH: " + str(epoch)) for batchno, minibatch in enumerate(minibatches): print("BATCH: " + str(batchno)) print("current_learningrate: " + str(learningrate)) random.shuffle(minibatch) results_train = process_sentences(minibatch, labeler, is_training=True, learningrate=learningrate, config=config, name="train") if data_dev != None: results_dev = process_sentences(data_dev, labeler, is_training=False, learningrate=0.0, config=config, name="dev") no_improvement_for += 1 if math.isnan(results_dev["dev_cost_sum"]) or math.isinf( results_dev["dev_cost_sum"]): sys.stderr.write( "ERROR: Cost is NaN or Inf. Exiting.\n") break if ((epoch == 0 and batchno == 0) or (model_selector_type == "high" and results_dev[model_selector] > best_selector_value) or (model_selector_type == "low" and results_dev[model_selector] < best_selector_value)): best_epoch = epoch best_batch = batchno no_improvement_for = 0 best_selector_value = results_dev[model_selector] labeler.saver.save( labeler.session, temp_model_path, latest_filename=os.path.basename(temp_model_path) + ".checkpoint") print("best_epoch and best_batch: " + str(best_epoch) + "-" + str(best_batch)) print("no improvement for: " + str(no_improvement_for)) if no_improvement_for > config["learningrate_delay"]: learningrate *= config["learningrate_decay"] if config[ "stop_if_no_improvement_for_epochs"] > 0 and no_improvement_for >= config[ "stop_if_no_improvement_for_epochs"]: break if config[ "stop_if_no_improvement_for_epochs"] > 0 and no_improvement_for >= config[ "stop_if_no_improvement_for_epochs"]: break while config["garbage_collection"] == True and gc.collect() > 0: pass if data_dev != None and best_epoch >= 0: # loading the best model so far labeler.saver.restore(labeler.session, temp_model_path) os.remove(temp_model_path + ".checkpoint") os.remove(temp_model_path + ".data-00000-of-00001") os.remove(temp_model_path + ".index") os.remove(temp_model_path + ".meta") if config["save"] is not None and len(config["save"]) > 0: labeler.save(config["save"]) if config["path_test"] is not None: i = 0 for path_test in config["path_test"].strip().split(":"): data_test = read_input_files(path_test) results_test = process_sentences(data_test, labeler, is_training=False, learningrate=0.0, config=config, name="test" + str(i)) i += 1
def load_model(config, data_train, data_dev, data_test): if config["load"] != None and len(config["load"]) > 0: labeler = SequenceLabeler.load(config["load"]) else: labeler = SequenceLabeler(config) labeler.build_vocabs(data_train, data_dev, data_test, config["preload_vectors"]) labeler.construct_network() labeler.initialize_session() if config["preload_vectors"] is not None: labeler.preload_word_embeddings(config["preload_vectors"]) print("parameter_count: " + str(labeler.get_parameter_count())) print("parameter_count_without_word_embeddings: " + str(labeler.get_parameter_count_without_word_embeddings())) return labeler