def main(): parser = argparse.ArgumentParser() parser.add_argument('json_file') args = parser.parse_args() json_file = args.json_file data = json.load(open(json_file)) img = utils.img_b64_to_arr(data['imageData']) label_name_to_value = {'_background_': 0} for shape in data['shapes']: label_name = shape['label'] if label_name in label_name_to_value: label_value = label_name_to_value[label_name] else: label_value = len(label_name_to_value) label_name_to_value[label_name] = label_value lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value) captions = [ '{}: {}'.format(lv, ln) for ln, lv in label_name_to_value.items() ] lbl_viz = utils.draw_label(lbl, img, captions) plt.subplot(121) plt.imshow(img) plt.subplot(122) plt.imshow(lbl_viz) plt.show()
def main(): parser = argparse.ArgumentParser() parser.add_argument('json_file') parser.add_argument('-o', '--out', default=None) args = parser.parse_args() json_file = args.json_file list = os.listdir(json_file) for i in range(0, len(list)): path = os.path.join(json_file, list[i]) if os.path.isfile(path): data = json.load(open(path)) img = utils.img_b64_to_arr(data['imageData']) lbl, lbl_names = utils.labelme_shapes_to_label( img.shape, data['shapes']) captions = [ '%d: %s' % (l, name) for l, name in enumerate(lbl_names) ] lbl_viz = utils.draw_label(lbl, img, captions) out_dir = osp.basename(list[i]).replace('.', '_') out_dir = osp.join(osp.dirname(list[i]), out_dir) if not osp.exists(out_dir): os.mkdir(out_dir) PIL.Image.fromarray(img).save(osp.join(out_dir, 'img.png')) utils.lblsave(osp.join(out_dir, 'label.png'), lbl) PIL.Image.fromarray(lbl_viz).save( osp.join(out_dir, 'label_viz.png')) with open(osp.join(out_dir, 'label_names.txt'), 'w') as f: for lbl_name in lbl_names: f.write(lbl_name + '\n') warnings.warn('info.yaml is being replaced by label_names.txt') info = dict(label_names=lbl_names) with open(osp.join(out_dir, 'info.yaml'), 'w') as f: yaml.safe_dump(info, f, default_flow_style=False) print('Saved to: %s' % out_dir)
def main(): ''' parser = argparse.ArgumentParser() parser.add_argument('json_file') args = parser.parse_args() ''' json_file = '/Users/nainggolan/Documents/dataset/te/1.json' out_dir = osp.basename(json_file).replace('.', '_') out_dir = osp.join(osp.dirname(json_file), out_dir) os.mkdir(out_dir) data = json.load(open(json_file)) img = utils.img_b64_to_array(data['imageData']) lbl, lbl_names = utils.labelme_shapes_to_label(img.shape, data['shapes']) lbl_viz = utils.draw_label(lbl, img, lbl_names) PIL.Image.fromarray(img).save(osp.join(out_dir, 'img.png')) PIL.Image.fromarray(lbl).save(osp.join(out_dir, 'label.png')) PIL.Image.fromarray(lbl_viz).save(osp.join(out_dir, 'label_viz.png')) info = dict(label_names=lbl_names) with open(osp.join(out_dir, 'info.yaml'), 'w') as f: yaml.safe_dump(info, f, default_flow_style=False) print('wrote data to %s' % out_dir)
def main(): ''' parser = argparse.ArgumentParser() parser.add_argument() args = parser.parse_args() ''' json_file = '/Users/nainggolan/Desktop/te/1.json' data = json.load(open(json_file)) # 加载json文件 img = utils.img_b64_to_array(data['imageData']) # 解析原图片数据 lbl, lbl_names = utils.labelme_shapes_to_label( img.shape, data['shapes'] ) # 解析'shapes'中的字段信息,解析出每个对象的mask与对应的label lbl存储 mask,lbl_names 存储对应的label # lal 像素取值 0、1、2 其中0对应背景,1对应第一个对象,2对应第二个对象 # 使用该方法取出每个对象的mask mask=[] mask.append((lbl==1).astype(np.uint8)) # 解析出像素值为1的对象,对应第一个对象 mask 为0、1组成的(0为背景,1为对象) # lbl_names ['background','cat_1','cat_2'] captions = ['%d: %s' % (l, name) for l, name in enumerate(lbl_names)] lbl_viz = utils.draw_label(lbl, img, captions) plt.subplot(121) plt.imshow(img) plt.subplot(122) plt.imshow(lbl_viz) plt.show()
def main(): logger.warning('This script is aimed to demonstrate how to convert the' 'JSON file to a single image dataset, and not to handle' 'multiple JSON files to generate a real-use dataset.') parser = argparse.ArgumentParser() parser.add_argument('json_file') parser.add_argument('-o', '--out', default=None) args = parser.parse_args() json_file = args.json_file if args.out is None: out_dir = osp.basename(json_file).replace('.', '_') out_dir = osp.join(osp.dirname(json_file), out_dir) else: out_dir = args.out if not osp.exists(out_dir): os.mkdir(out_dir) data = json.load(open(json_file)) if data['imageData']: imageData = data['imageData'] else: imagePath = os.path.join(os.path.dirname(json_file), data['imagePath']) with open(imagePath, 'rb') as f: imageData = f.read() imageData = base64.b64encode(imageData).decode('utf-8') img = utils.img_b64_to_arr(imageData) label_name_to_value = {'_background_': 0} for shape in sorted(data['shapes'], key=lambda x: x['label']): label_name = shape['label'] if label_name in label_name_to_value: label_value = label_name_to_value[label_name] else: label_value = len(label_name_to_value) label_name_to_value[label_name] = label_value lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value) label_names = [None] * (max(label_name_to_value.values()) + 1) for name, value in label_name_to_value.items(): label_names[value] = name lbl_viz = utils.draw_label(lbl, img, label_names) PIL.Image.fromarray(img).save(osp.join(out_dir, 'img.png')) utils.lblsave(osp.join(out_dir, 'label.png'), lbl) PIL.Image.fromarray(lbl_viz).save(osp.join(out_dir, 'label_viz.png')) with open(osp.join(out_dir, 'label_names.txt'), 'w') as f: for lbl_name in label_names: f.write(lbl_name + '\n') logger.warning('info.yaml is being replaced by label_names.txt') info = dict(label_names=label_names) with open(osp.join(out_dir, 'info.yaml'), 'w') as f: yaml.safe_dump(info, f, default_flow_style=False) logger.info('Saved to: {}'.format(out_dir))
def json2dataset(json_dirpath): json_file = json_dirpath data = json.load(open(json_file)) if data['imageData']: imageData = data['imageData'] else: imagePath = os.path.join(os.path.dirname(json_file), data['imagePath']) with open(imagePath, 'rb') as f: imageData = f.read() imageData = base64.b64encode(imageData).decode('utf-8') img = utils.img_b64_to_arr(imageData) label_name_to_value = {'_background_': 0} for shape in sorted(data['shapes'], key=lambda x: x['label']): label_name = shape['label'] if label_name in label_name_to_value: label_value = label_name_to_value[label_name] else: label_value = len(label_name_to_value) label_name_to_value[label_name] = label_value lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value) label_names = [None] * (max(label_name_to_value.values()) + 1) for name, value in label_name_to_value.items(): label_names[value] = name lbl_viz = utils.draw_label(lbl, img, label_names) return lbl
def singleFile(filePath): if os.path.isfile(filePath) and filePath.endswith('.json'): data = json.load(open(filePath)) img = lUtils.img_b64_to_arr(data['imageData']) lbl, lbl_names = lUtils.labelme_shapes_to_label( img.shape, data['shapes']) # lbl[lbl>0] = 255 # print(lbl) captions = ['%d: %s' % (l, name) for l, name in enumerate(lbl_names)] lbl_viz = lUtils.draw_label(lbl, img, captions) out_dir = osp.basename(filePath).replace('.', '_') out_dir = osp.join(osp.dirname(filePath), out_dir) if not osp.exists(out_dir): os.mkdir(out_dir) PIL.Image.fromarray(img).save(osp.join(out_dir, 'img.png')) PIL.Image.fromarray(lbl).save(osp.join(out_dir, 'label.png')) print(np.max(lbl)) lbl = np.array(lbl, dtype=np.uint8) lbl[lbl > 0] = 255 PIL.Image.fromarray(lbl).save(osp.join(out_dir, 'label_255.png')) PIL.Image.fromarray(lbl_viz).save(osp.join(out_dir, 'label_viz.png')) with open(osp.join(out_dir, 'label_names.txt'), 'w') as f: for lbl_name in lbl_names: f.write(lbl_name + '\n') warnings.warn('info.yaml is being replaced by label_names.txt') info = dict(label_names=lbl_names) with open(osp.join(out_dir, 'info.yaml'), 'w') as f: yaml.safe_dump(info, f, default_flow_style=False) print('Saved to: %s' % out_dir)
def save_label_from_json(json_file, out_dir): data = json.load(open(json_file)) if data['imageData']: imageData = data['imageData'] else: imagePath = osp.join(osp.dirname(json_file), data['imagePath']) with open(imagePath, 'rb') as f: imageData = f.read() imageData = base64.b64encode(imageData).decode('utf-8') img = utils.img_b64_to_arr(imageData) label_name_to_value = {'_background_': 0} for shape in sorted(data['shapes'], key=lambda x: x['label']): label_name = shape['label'] if label_name in label_name_to_value: label_value = label_name_to_value[label_name] else: label_value = len(label_name_to_value) label_name_to_value[label_name] = label_value lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value) label_names = [None] * (max(label_name_to_value.values()) + 1) for name, value in label_name_to_value.items(): label_names[value] = name lbl_viz = utils.draw_label(lbl, img, label_names) utils.lblsave(osp.join(out_dir, 'label.png'), lbl) PIL.Image.fromarray(lbl_viz).save(osp.join(out_dir, 'label_viz.png')) with open(osp.join(out_dir, 'label_names.txt'), 'w') as f: for lbl_name in label_names: f.write(lbl_name + '\n')
def changeToDataset(json_dir, out_dir=None): # parser = argparse.ArgumentParser() # parser.add_argument('json_file') # parser.add_argument('-o', '--out', default=None) # args = parser.parse_args() for fileName in os.listdir(json_dir): if re.match(".*[.]json$", fileName): json_file = osp.join(json_dir, fileName) print json_file if out_dir is None: out_dir = osp.join(osp.dirname(json_file), "output") # else: # print 'Existed out_dir = ',out_dir if not osp.exists(out_dir): os.mkdir(out_dir) out_dir_label = os.path.join(out_dir, 'label') if not osp.exists(out_dir_label): os.mkdir(out_dir_label) out_dir_viz = os.path.join(out_dir, 'viz') if not osp.exists(out_dir_viz): os.mkdir(out_dir_viz) print "out_dir_label = ", out_dir_label data = json.load(open(json_file)) img = utils.img_b64_to_array(data['imageData']) lbl, lbl_names = utils.labelme_shapes_to_label( img.shape, data['shapes']) #print 0: background 1: sto # for l, name in enumerate(lbl_names): # print '%d: %s' % (l, name) captions = [ '%d: %s' % (l, name) for l, name in enumerate(lbl_names) ] lbl_viz = utils.draw_label(lbl, img, captions) #New Name NewName = fileName.split('.')[0] print osp.join(out_dir, NewName + '.png') # PIL.Image.fromarray(img).save(osp.join(out_dir,NewName+ '_img.png')) PIL.Image.fromarray(lbl).save( osp.join(out_dir_label, NewName + '.png')) PIL.Image.fromarray(lbl_viz).save( osp.join(out_dir_viz, NewName + '_label_viz.png')) with open(osp.join(out_dir, 'label_names.txt'), 'w') as f: for lbl_name in lbl_names: f.write(lbl_name + '\n') # warnings.warn('info.yaml is being replaced by label_names.txt') info = dict(label_names=lbl_names) with open(osp.join(out_dir, 'info.yaml'), 'w') as f: yaml.safe_dump(info, f, default_flow_style=False)
def json2label(json_folder): json_list = glob.glob(os.path.join(json_folder, '*.json')) annotations_dir = os.path.join(json_folder, "annotations") josn2labels_dir = os.path.join(json_folder, "josn2labels") if not os.path.exists(annotations_dir): os.makedirs(annotations_dir) if not os.path.exists(josn2labels_dir): os.makedirs(josn2labels_dir) for json_file in json_list: temp_name = json_file.split(".")[0].split("/")[-1] out_dir = os.path.join(josn2labels_dir, temp_name) if not osp.exists(out_dir): os.mkdir(out_dir) data = json.load(open(json_file)) if data['imageData']: imageData = data['imageData'] else: imagePath = os.path.join(os.path.dirname(json_file), data['imagePath']) with open(imagePath, 'rb') as f: imageData = f.read() imageData = base64.b64encode(imageData).decode('utf-8') img = utils.img_b64_to_arr(imageData) label_name_to_value = {'_background_': 0, '1': 1, '2': 2, '3': 3} lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value) label_names = [None] * (max(label_name_to_value.values()) + 1) for name, value in label_name_to_value.items(): label_names[value] = name lbl_viz = utils.draw_label(lbl, img, label_names) PIL.Image.fromarray(img).save( osp.join(out_dir, '%s_img.png' % (temp_name))) utils.lblsave(osp.join(out_dir, '%s.png' % (temp_name)), lbl) utils.lblsave(osp.join(annotations_dir, '%s.png' % (temp_name)), lbl) PIL.Image.fromarray(lbl_viz).save( osp.join(out_dir, '%s_label_viz.png' % (temp_name))) with open(osp.join(out_dir, 'label_names.txt'), 'w') as f: for lbl_name in label_names: f.write(lbl_name + '\n') warnings.warn('info.yaml is being replaced by label_names.txt') info = dict(label_names=label_names) with open(osp.join(out_dir, 'info.yaml'), 'w') as f: yaml.safe_dump(info, f, default_flow_style=False) print('Saved to: %s' % out_dir)
def main(): json_file = 'C:/Users/QJ/Desktop/hh/total' list = os.listdir(json_file) for i in range(0, len(list)): path = os.path.join(json_file, list[i]) if os.path.isfile(path): data = json.load(open(path)) img = utils.img_b64_to_array(data['imageData']) lbl, lbl_names = utils.labelme_shapes_to_label( img.shape, data['shapes']) captions = [ '%d: %s' % (l, name) for l, name in enumerate(lbl_names) ] lbl_viz = utils.draw_label(lbl, img, captions) out_dir = osp.basename(list[i]).replace('.', '_') out_dir = osp.join(osp.dirname(list[i]), out_dir) out_dir = json_file + "/" + out_dir if not osp.exists(out_dir): os.mkdir(out_dir) PIL.Image.fromarray(img).save(osp.join(out_dir, 'img.png')) # PIL.Image.fromarray(lbl).save() labelpath = osp.join(out_dir, 'label.png') # PIL.Image.fromarray(lbl).save(labelpath) # opencvimg16 = cv2.imread(labelpath) # opencvimg.convertTo(opencvimg6,) lbl8u = np.zeros((lbl.shape[0], lbl.shape[1]), dtype=np.uint8) for i in range(lbl.shape[0]): for j in range(lbl.shape[1]): lbl8u[i, j] = lbl[i, j] PIL.Image.fromarray(lbl8u).save(labelpath) # Alllabelpath="%s" PIL.Image.fromarray(lbl_viz).save(osp.join(out_dir, 'label_viz.png')) with open(osp.join(out_dir, 'label_names.txt'), 'w') as f: for lbl_name in lbl_names: f.write(lbl_name + '\n') warnings.warn('info.yaml is being replaced by label_names.txt') info = dict(label_names=lbl_names) with open(osp.join(out_dir, 'info.yaml'), 'w') as f: yaml.dump(info, f, default_flow_style=False) fov = open(osp.join(out_dir, 'info.yaml'), 'w') for key in info: fov.writelines(key) fov.write(':\n') for k, v in lbl_names.items(): fov.write(' ') fov.write(k) fov.write(':\n') fov.close() print('Saved to: %s' % out_dir)
def main(): logger.warning('This script is aimed to demonstrate how to convert the' 'JSON file to a single image dataset, and not to handle' 'multiple JSON files to generate a real-use dataset.') # parser = argparse.ArgumentParser() # parser.add_argument('json_file') # parser.add_argument('-o', '--out', default=None) # args = parser.parse_args() json_files = glob.glob(r'C:\Users\Zeran\Desktop\loudi\*.json') for json_file in json_files: out_dir = osp.basename(json_file).replace('.', '_') out_dir = osp.join(osp.dirname(json_file), out_dir) # reload(sys) # sys.setdefaultencoding('utf8') f = open(json_file, encoding='utf-8') text = f.read() # text = text.decode("gbk").encode("utf-8") data = json.loads(text) # data = f.read().decode(encoding='gbk').encode(encoding='utf-8') # data = json.load(open(json_file)) if data['imageData']: imageData = data['imageData'] else: imagePath = os.path.join(os.path.dirname(json_file), data['imagePath']) with open(imagePath, 'rb') as f: imageData = f.read() imageData = base64.b64encode(imageData).decode('utf-8') img = utils.img_b64_to_arr(imageData) label_name_to_value = {'_background_': 0} for shape in sorted(data['shapes'], key=lambda x: x['label']): label_name = shape['label'] # if label_name in label_name_to_value: # label_value = label_name_to_value[label_name] # else: # label_value = len(label_name_to_value) label_name_to_value[label_name] = 255 lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value) label_names = [None] * (max(label_name_to_value.values()) + 1) for name, value in label_name_to_value.items(): label_names[value] = name lbl_viz = utils.draw_label(lbl, img, label_names) saved_name = os.path.splitext(os.path.basename(json_file))[0] + '.png' utils.lblsave( osp.join('D:\\coslight\\0304_beforetolabel\\label\\', saved_name), lbl)
def changeToDataset(json_dir,out_dir=None): # parser = argparse.ArgumentParser() # parser.add_argument('json_file') # parser.add_argument('-o', '--out', default=None) # args = parser.parse_args() for fileName in os.listdir(json_dir): if re.match(".*[.]json$",fileName): json_file = osp.join(json_dir,fileName) print json_file if out_dir is None: out_dir = osp.join(osp.dirname(json_file), "output") # else: # print 'Existed out_dir = ',out_dir if not osp.exists(out_dir): os.mkdir(out_dir) out_dir_label = os.path.join(out_dir, 'label') if not osp.exists(out_dir_label): os.mkdir(out_dir_label) out_dir_viz = os.path.join(out_dir,'viz') if not osp.exists(out_dir_viz): os.mkdir(out_dir_viz) print "out_dir_label = ",out_dir_label data = json.load(open(json_file)) img = utils.img_b64_to_array(data['imageData']) lbl, lbl_names = utils.labelme_shapes_to_label(img.shape, data['shapes']) #print 0: background 1: sto # for l, name in enumerate(lbl_names): # print '%d: %s' % (l, name) captions = ['%d: %s' % (l, name) for l, name in enumerate(lbl_names)] lbl_viz = utils.draw_label(lbl, img, captions) #New Name NewName = fileName.split('.')[0] print osp.join(out_dir,NewName+ '.png') # PIL.Image.fromarray(img).save(osp.join(out_dir,NewName+ '_img.png')) PIL.Image.fromarray(lbl).save(osp.join(out_dir_label, NewName+ '.png')) PIL.Image.fromarray(lbl_viz).save(osp.join(out_dir_viz, NewName+ '_label_viz.png')) with open(osp.join(out_dir, 'label_names.txt'), 'w') as f: for lbl_name in lbl_names: f.write(lbl_name + '\n') # warnings.warn('info.yaml is being replaced by label_names.txt') info = dict(label_names=lbl_names) with open(osp.join(out_dir, 'info.yaml'), 'w') as f: yaml.safe_dump(info, f, default_flow_style=False)
def main(): count = os.listdir("./before/") for i in range(0, len(count)): path = os.path.join("./before", count[i]) if os.path.isfile(path) and path.endswith('json'): data = json.load(open(path)) if data['imageData']: imageData = data['imageData'] else: imagePath = os.path.join(os.path.dirname(path), data['imagePath']) with open(imagePath, 'rb') as f: imageData = f.read() imageData = base64.b64encode(imageData).decode('utf-8') img = utils.img_b64_to_arr(imageData) label_name_to_value = {'_background_': 0} for shape in data['shapes']: label_name = shape['label'] if label_name in label_name_to_value: label_value = label_name_to_value[label_name] else: label_value = len(label_name_to_value) label_name_to_value[label_name] = label_value # label_values must be dense label_values, label_names = [], [] for ln, lv in sorted(label_name_to_value.items(), key=lambda x: x[1]): label_values.append(lv) label_names.append(ln) assert label_values == list(range(len(label_values))) lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value) captions = [ '{}: {}'.format(lv, ln) for ln, lv in label_name_to_value.items() ] lbl_viz = utils.draw_label(lbl, img, captions) out_dir = osp.basename(count[i]).replace('.', '_') out_dir = osp.join(osp.dirname(count[i]), out_dir) out_dir = osp.join("output", out_dir) if not osp.exists(out_dir): #os.mkdir(out_dir) os.makedirs(out_dir) PIL.Image.fromarray(img).save(osp.join(out_dir, 'img.png')) utils.lblsave(osp.join(out_dir, 'label.png'), lbl) PIL.Image.fromarray(lbl_viz).save( osp.join(out_dir, 'label_viz.png')) with open(osp.join(out_dir, 'label_names.txt'), 'w') as f: for lbl_name in label_names: f.write(lbl_name + '\n') warnings.warn('info.yaml is being replaced by label_names.txt') info = dict(label_names=label_names) with open(osp.join(out_dir, 'info.yaml'), 'w') as f: yaml.safe_dump(info, f, default_flow_style=False) print('Saved to: %s' % out_dir)
def main(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('label_png', help='label PNG file') args = parser.parse_args() lbl = np.asarray(PIL.Image.open(args.label_png)) logger.info('label shape: {}'.format(lbl.shape)) logger.info('unique label values: {}'.format(np.unique(lbl))) lbl_viz = utils.draw_label(lbl) plt.imshow(lbl_viz) plt.show()
def main(): warnings.warn("This script is aimed to demonstrate how to convert the\n" "JSON file to a single image dataset, and not to handle\n" "multiple JSON files to generate a real-use dataset.") parser = argparse.ArgumentParser() parser.add_argument('json_file') parser.add_argument('-o', '--out', default=None) args = parser.parse_args() json_file = args.json_file print("json_flie= ",json_file) if args.out is None: out_dir = osp.basename(json_file).replace('.', '_') out_dir = osp.join(osp.dirname(json_file), out_dir) else: out_dir = args.out if not osp.exists(out_dir): os.mkdir(out_dir) data = json.load(open(json_file)) print("json---load") img = utils.img_b64_to_arr(data['imageData']) label_name_to_value = {'_background_': 0} for shape in data['shapes']: label_name = shape['label'] if label_name in label_name_to_value: label_value = label_name_to_value[label_name] else: label_value = len(label_name_to_value) label_name_to_value[label_name] = label_value # label_values must be dense label_values, label_names = [], [] for ln, lv in sorted(label_name_to_value.items(), key=lambda x: x[1]): label_values.append(lv) label_names.append(ln) assert label_values == list(range(len(label_values))) lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value) captions = ['{}: {}'.format(lv, ln) for ln, lv in label_name_to_value.items()] lbl_viz = utils.draw_label(lbl, img, captions) PIL.Image.fromarray(img).save(osp.join(out_dir, 'img.png')) PIL.Image.fromarray(lbl).save(osp.join(out_dir, 'label.png')) PIL.Image.fromarray(lbl_viz).save(osp.join(out_dir, 'label_viz.png')) with open(osp.join(out_dir, 'label_names.txt'), 'w') as f: for lbl_name in label_names: f.write(lbl_name + '\n') warnings.warn('info.yaml is being replaced by label_names.txt') info = dict(label_names=label_names) with open(osp.join(out_dir, 'info.yaml'), 'w') as f: yaml.safe_dump(info, f, default_flow_style=False) print('Saved to: %s' % out_dir)
def json_to_dataset(json_file_path): out_dir = osp.basename(json_file_path).replace('.', '_') out_dir = osp.join(osp.dirname(json_file_path), out_dir) if not osp.exists(out_dir): os.mkdir(out_dir) data = json.load(open(json_file_path)) img = utils.img_b64_to_array(data['imageData']) lbl, lbl_names = utils.labelme_shapes_to_label(img.shape, data['shapes']) lbl_viz = utils.draw_label(lbl, img, lbl_names) PIL.Image.fromarray(img).save(osp.join(out_dir, 'img.png')) PIL.Image.fromarray(lbl).save(osp.join(out_dir, 'label.png')) PIL.Image.fromarray(lbl_viz).save(osp.join(out_dir, 'label_viz.png')) info = dict(label_names=lbl_names) with open(osp.join(out_dir, 'info.yaml'), 'w') as f: yaml.safe_dump(info, f, default_flow_style=False) print('wrote data to %s' % out_dir)
def main(): parser = argparse.ArgumentParser() parser.add_argument('json_file') args = parser.parse_args() json_file = args.json_file data = json.load(open(json_file)) img = utils.img_b64_to_array(data['imageData']) lbl, lbl_names = utils.labelme_shapes_to_label(img.shape, data['shapes']) captions = ['%d: %s' % (l, name) for l, name in enumerate(lbl_names)] lbl_viz = utils.draw_label(lbl, img, captions) # lbl_names[0] 默认为背景,对应的像素值为0 # 解析图片中的对象 像素值不为0(0 对应背景) mask = [] class_id = [] for i in range(1, len(lbl_names)): # 跳过第一个class(默认为背景) mask.append((lbl == i).astype( np.uint8)) # 解析出像素值为1的对应,对应第一个对象 mask 为0、1组成的(0为背景,1为对象) class_id.append(i) # mask与clas 一一对应 mask = np.transpose(np.asarray(mask, np.uint8), [1, 2, 0]) # 转成[h,w,instance count] class_id = np.asarray(class_id, np.uint8) # [instance count,] class_name = lbl_names[1:] # 不需要包含背景 lbl_names[0] 默认为背景 plt.subplot(221) plt.imshow(img) plt.axis('off') plt.subplot(222) plt.imshow(lbl_viz) plt.axis('off') plt.subplot(223) plt.imshow(mask[:, :, 0], 'gray') plt.title(class_name[0] + '\n id ' + str(class_id[0])) plt.axis('off') plt.subplot(224) plt.imshow(mask[:, :, 1], 'gray') plt.title(class_name[1] + '\n id ' + str(class_id[1])) plt.axis('off') plt.show()
def main(): logger = logging.Logger('labelme') logger.setLevel(logging.INFO) parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('label_png', help='label PNG file') args = parser.parse_args() lbl = np.asarray(PIL.Image.open(args.label_png)) logger.info('label shape: {}'.format(lbl.shape)) logger.info('unique label values: {}'.format(np.unique(lbl))) lbl_viz = utils.draw_label(lbl) plt.imshow(lbl_viz) plt.show()
def main(): # parser = argparse.ArgumentParser() # parser.add_argument('json_file') # args = parser.parse_args() # # json_file = args.json_file # json_file=r"C:\Users\Administrator\Desktop\windows_v1.5.1\data\WIN_20180504_10_05_03_Pro.json" json_file = r"C:\Users\Administrator\Desktop\windows_v1.5.1\data\img00000001.json" data = json.load(open(json_file)) img = utils.img_b64_to_array(data['imageData']) lbl, lbl_names = utils.labelme_shapes_to_label(img.shape, data['shapes']) lbl_viz = utils.draw_label(lbl, img, lbl_names) plt.imshow(lbl_viz) plt.show()
def main(): warnings.warn("This script is aimed to demonstrate how to convert the\n" "JSON file to a single image dataset, and not to handle\n" "multiple JSON files to generate a real-use dataset.") parser = argparse.ArgumentParser() parser.add_argument('json_file') parser.add_argument('-o', '--out', default=None) args = parser.parse_args() json_file = args.json_file if args.out is None: out_dir = osp.basename(json_file).replace('.', '_') out_dir = osp.join(osp.dirname(json_file), out_dir) else: out_dir = args.out if not osp.exists(out_dir): os.mkdir(out_dir) data = json.load(open(json_file)) img = utils.img_b64_to_array(data['imageData']) lbl, lbl_names = utils.labelme_shapes_to_label(img.shape, data['shapes']) captions = ['%d: %s' % (l, name) for l, name in enumerate(lbl_names)] lbl_viz = utils.draw_label(lbl, img, captions) PIL.Image.fromarray(img).save(osp.join(out_dir, 'img.png')) PIL.Image.fromarray(lbl).save(osp.join(out_dir, 'label.png')) PIL.Image.fromarray(lbl_viz).save(osp.join(out_dir, 'label_viz.png')) with open(osp.join(out_dir, 'label_names.txt'), 'w') as f: for lbl_name in lbl_names: f.write(lbl_name + '\n') warnings.warn('info.yaml is being replaced by label_names.txt') info = dict(label_names=lbl_names) with open(osp.join(out_dir, 'info.yaml'), 'w') as f: yaml.safe_dump(info, f, default_flow_style=False) print('Saved to: %s' % out_dir)
def main(): parser = argparse.ArgumentParser() parser.add_argument('json_file') args = parser.parse_args() json_file = args.json_file data = json.load(open(json_file)) img = utils.img_b64_to_array(data['imageData']) lbl, lbl_names = utils.labelme_shapes_to_label(img.shape, data['shapes']) captions = ['%d: %s' % (l, name) for l, name in enumerate(lbl_names)] lbl_viz = utils.draw_label(lbl, img, captions) plt.subplot(121) plt.imshow(img) plt.subplot(122) plt.imshow(lbl_viz) plt.show()
def writeimages(img, lbl, depth_map, jsonFile, sufix, out_images_dir, out_labels_dir, out_labels_raw_dir, debug_dir, label_name_to_value, args): #Plot visualization if in debug mode if args.debug: label_names = [None] * (max(label_name_to_value.values()) + 1) for name, value in label_name_to_value.items(): label_names[value] = name lbl_viz = utils.draw_label(lbl, img, label_names) PIL.Image.fromarray(lbl_viz).save( osp.join( debug_dir, jsonFile.replace('./', '').replace('../', '').replace( '/', '_').replace('.json', '-' + sufix + '-label_viz.png'))) jsonFileName = jsonFile[jsonFile.rfind('/') + 1:] #Save image if out_images_dir is not None: PIL.Image.fromarray(img).save( osp.join(out_images_dir, jsonFileName.replace('.json', '.jpg'))) #Save labels utils.lblsave( osp.join(out_labels_dir, jsonFileName.replace('.json', '-' + sufix + '-label.png')), lbl) #Save labels with raw annotation PIL.Image.fromarray(lbl.astype(dtype=np.uint8)).save( osp.join(out_labels_raw_dir, jsonFileName.replace('.json', '-' + sufix + '-label_raw.png'))) if args.depth: #Save depth image # PIL.Image.fromarray(depth_map.astype(dtype=np.uint8)).save( # osp.join(out_images_dir, jsonFile.replace('.json','-depth.png')) # ) PIL.Image.fromarray(depth_map.astype(dtype=np.uint8)).save( osp.join(out_images_dir, jsonFileName.replace('.json', '-' + sufix + '-depth.png')))
def main(): logger = logging.Logger('labelme') logger.setLevel(logging.INFO) parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('label_png', help='label PNG file') args = parser.parse_args() lbl = np.asarray(PIL.Image.open(args.label_png)) if lbl.dtype != np.int32: logger.warn( 'We recomment numpy.int32 for the label, but it has: {}'.format( lbl.dtype)) logger.info('label shape: {}'.format(lbl.shape)) logger.info('unique label values: {}'.format(np.unique(lbl))) lbl_viz = utils.draw_label(lbl) plt.imshow(lbl_viz) plt.show()
def main(): parser = argparse.ArgumentParser() parser.add_argument('json_file') args = parser.parse_args() json_file = args.json_file data = json.load(open(json_file)) if data['imageData']: imageData = data['imageData'] else: imagePath = os.path.join(os.path.dirname(json_file), data['imagePath']) with open(imagePath, 'rb') as f: imageData = f.read() imageData = base64.b64encode(imageData).decode('utf-8') img = utils.img_b64_to_arr(imageData) label_name_to_value = {'_background_': 0} for shape in data['shapes']: label_name = shape['label'] if label_name in label_name_to_value: label_value = label_name_to_value[label_name] else: label_value = len(label_name_to_value) label_name_to_value[label_name] = label_value lbl = utils.shapes_to_label( img.shape, data['shapes'], label_name_to_value) captions = ['{}: {}'.format(lv, ln) for ln, lv in label_name_to_value.items()] lbl_viz = utils.draw_label(lbl, img, captions) plt.subplot(121) plt.imshow(img) plt.subplot(122) plt.imshow(lbl_viz) plt.show()
def get_all_class_mask(json_file_path): ''' returns: img: 原图 mask: 所有类别的mask,二值图,0和255 img_with_label: 带掩模的图 lbl_value_to_names: mask的index可以从lbl_value_to_names得到class名称 ''' if os.path.exists(json_file_path): with open(json_file_path) as json_f: data = json.load(json_f) img = utils.img_b64_to_arr(data['imageData']) #lbl是一个mask,每个obj的像素赋值为该obj对应的value lbl, lbl_names_to_value = utils.labelme_shapes_to_label( img.shape, data['shapes']) #包含背景0 captions = [ '%d: %s' % (l, name) for l, name in enumerate(lbl_names_to_value) ] img_with_label = utils.draw_label(lbl, img, captions) tmp = [(l - 1, name) for l, name in enumerate(lbl_names_to_value) if l != 0] lbl_value_to_names = {} for l, name in tmp: lbl_value_to_names[l] = name #不包含背景 mask = [] # instance_id=[] for i in range(1, len(lbl_names_to_value)): # 跳过第一个class(默认为背景) mask.append( (lbl == i).astype(np.uint8) * 255 ) # mask[i]对应第i个对象的mask, 为0、255组成的(0为背景,255为对象),所有对象的mask叠起来组成三维 # instance_id.append(i) # mask与clas 一一对应 # all_mask=np.transpose(np.asarray(mask,np.uint8),[1,2,0]) # 转成[h,w,instance count] # instance_id=np.asarray(instance_id,np.uint8) # [instance count,] else: raise Exception("no such a json file!!") return img, mask, img_with_label, lbl_value_to_names
def save_label_info(img, name, dir_label, dir_info, dir_vis, shape_): label_name_to_value = {'_background_': 0, "1": 1, "2": 2, "3": 3} # for shape in shapes: # label_name = shape['label'] # if label_name in label_name_to_value: # label_value = label_name_to_value[label_name] # else: # label_value = len(label_name_to_value) # label_name_to_value[label_name] = label_value # print(label_name_to_value.items()) label_values, label_names = [], [] for ln, lv in sorted(label_name_to_value.items(), key=lambda x: x[1]): # print(ln,lv) label_values.append(lv) label_names.append(ln) assert label_values == list(range(len(label_values))) lbl = utils.shapes_to_label(img.shape, shape_, label_name_to_value) # 'instance' # print(ins) captions = [ '{}: {}'.format(lv, ln) for ln, lv in label_name_to_value.items() ] lbl_viz = utils.draw_label(lbl, img, captions) # ins_viz=utils.draw_label(lbl, img, captions) # PIL.Image.fromarray(img).save('img.png') # PIL.Image.fromarray(lbl).save(osp.join(out_dir, 'label.png')) utils.lblsave(dir_label + name + '.png', lbl) PIL.Image.fromarray(lbl_viz).save(dir_vis + name + '.png') # with open('label_names.txt', 'w') as f: # for lbl_name in label_names: # f.write(lbl_name + '\n') # warnings.warn('info.yaml is being replaced by label_names.txt') info = dict(label_names=label_names) with open(dir_info + name + '.yaml', 'w') as f: yaml.safe_dump(info, f, default_flow_style=False)
def main(): parser = argparse.ArgumentParser() parser.add_argument('json_file') args = parser.parse_args() json_file = args.json_file data = json.load(open(json_file)) if data['imageData']: imageData = data['imageData'] else: imagePath = os.path.join(os.path.dirname(json_file), data['imagePath']) with open(imagePath, 'rb') as f: imageData = f.read() imageData = base64.b64encode(imageData).decode('utf-8') img = utils.img_b64_to_arr(imageData) label_name_to_value = {'_background_': 0} for shape in data['shapes']: label_name = shape['label'] if label_name in label_name_to_value: label_value = label_name_to_value[label_name] else: label_value = len(label_name_to_value) label_name_to_value[label_name] = label_value lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value) captions = [ '{}: {}'.format(lv, ln) for ln, lv in label_name_to_value.items() ] lbl_viz = utils.draw_label(lbl, img, captions) plt.subplot(121) plt.imshow(img) plt.subplot(122) plt.imshow(lbl_viz) plt.show()
def main(): parser = argparse.ArgumentParser() parser.add_argument('json_file') args = parser.parse_args() json_file = args.json_file #json_file = "D:/0test/1.json" #pdb.set_trace() data = json.load(open(json_file)) if data['imageData']: imageData = data['imageData'] else: imagePath = os.path.join(os.path.dirname(json_file), data['imagePath']) with open(imagePath, 'rb') as f: imageData = f.read() imageData = base64.b64encode(imageData).decode('utf-8') img = utils.img_b64_to_arr(imageData) label_name_to_value = {'_background_': 0} for shape in sorted(data['shapes'], key=lambda x: x['label']): label_name = shape['label'] if label_name in label_name_to_value: label_value = label_name_to_value[label_name] else: label_value = len(label_name_to_value) label_name_to_value[label_name] = label_value lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value) label_names = [None] * (max(label_name_to_value.values()) + 1) for name, value in label_name_to_value.items(): label_names[value] = name lbl_viz = utils.draw_label(lbl, img, label_names) plt.subplot(121) plt.imshow(img) plt.subplot(122) plt.imshow(lbl_viz) plt.show()
def main(): parser = argparse.ArgumentParser() parser.add_argument('json_file') args = parser.parse_args() json_file = args.json_file data = json.load(open(json_file)) if data['imageData']: imageData = data['imageData'] else: imagePath = os.path.join(os.path.dirname(json_file), data['imagePath']) with open(imagePath, 'rb') as f: imageData = f.read() imageData = base64.b64encode(imageData).decode('utf-8') img = utils.img_b64_to_arr(imageData) label_name_to_value = {'_background_': 0} for shape in sorted(data['shapes'], key=lambda x: x['label']): label_name = shape['label'] if label_name in label_name_to_value: label_value = label_name_to_value[label_name] else: label_value = len(label_name_to_value) label_name_to_value[label_name] = label_value lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value) label_names = [None] * (max(label_name_to_value.values()) + 1) for name, value in label_name_to_value.items(): label_names[value] = name lbl_viz = utils.draw_label(lbl, img, label_names) plt.subplot(121) plt.imshow(img) plt.subplot(122) plt.imshow(lbl_viz) plt.show()
def handle_json(json_file, out_dir): data = json.load(open(json_file)) img = utils.img_b64_to_arr(data['imageData']) label_name_to_value = {'_background_': 0} for shape in data['shapes']: label_name = shape['label'] if label_name in label_name_to_value: label_value = label_name_to_value[label_name] else: label_value = len(label_name_to_value) label_name_to_value[label_name] = label_value # label_values must be dense label_values, label_names = [], [] for ln, lv in sorted(label_name_to_value.items(), key=lambda x: x[1]): label_values.append(lv) label_names.append(ln) assert label_values == list(range(len(label_values))) lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value) captions = [ '{}: {}'.format(lv, ln) for ln, lv in label_name_to_value.items() ] lbl_viz = utils.draw_label(lbl, img, captions) PIL.Image.fromarray(img).save(osp.join(out_dir, 'img.png')) PIL.Image.fromarray(lbl).save(osp.join(out_dir, 'label.png')) PIL.Image.fromarray(lbl_viz).save(osp.join(out_dir, 'label_viz.png')) with open(osp.join(out_dir, 'label_names.txt'), 'w') as f: for lbl_name in label_names: f.write(lbl_name + '\n') # print('\n info.yaml is being replaced by label_names.txt') info = dict(label_names=label_names) with open(osp.join(out_dir, 'info.yaml'), 'w') as f: yaml.safe_dump(info, f, default_flow_style=False)
def main(): parser = argparse.ArgumentParser() parser.add_argument('json_file') args = parser.parse_args() json_file = args.json_file data = json.load(open(json_file)) if data['imageData']: imageData = data['imageData'] else: imagePath = os.path.join(os.path.dirname(json_file), data['imagePath']) with open(imagePath, 'rb') as f: imageData = f.read() imageData = base64.b64encode(imageData).decode('utf-8') img = utils.img_b64_to_arr(imageData) lbl, label_name_to_value = utils.shapes_to_label(img.shape, data['shapes']) lbl = utils.shapes_to_label( img.shape, shapes=data['shapes'], label_name_to_value=label_name_to_value, ) label_names = [None] * (max(label_name_to_value.values()) + 1) for name, value in label_name_to_value.items(): label_names[value] = name lbl_viz = utils.draw_label(lbl, img, label_names) plt.subplot(121) plt.imshow(img) plt.subplot(122) plt.imshow(lbl_viz) plt.show()
def main(): warnings.warn("This script is aimed to demonstrate how to convert the\n" "JSON file to a single image dataset, and not to handle\n" "multiple JSON files to generate a real-use dataset.") parser = argparse.ArgumentParser() parser.add_argument('json_file') parser.add_argument('-o', '--out', default=None) args = parser.parse_args() json_file = args.json_file #freedom list_path = os.listdir(json_file) print('freedom =', json_file) for i in range(0, len(list_path)): path = os.path.join(json_file, list_path[i]) if os.path.isfile(path): data = json.load(open(path)) img = utils.img_b64_to_arr(data['imageData']) lbl, lbl_names = utils.labelme_shapes_to_label( img.shape, data['shapes']) captions = [ '%d: %s' % (l, name) for l, name in enumerate(lbl_names) ] lbl_viz = utils.draw_label(lbl, img, captions) out_dir = osp.basename(path).replace('.', '_') save_file_name = out_dir out_dir = osp.join(osp.dirname(path), out_dir) if not osp.exists(json_file + '\\' + 'labelme_json'): os.mkdir(json_file + '\\' + 'labelme_json') labelme_json = json_file + '\\' + 'labelme_json' out_dir1 = labelme_json + '\\' + save_file_name if not osp.exists(out_dir1): os.mkdir(out_dir1) PIL.Image.fromarray(img).save(out_dir1 + '\\' + save_file_name + '_img.png') PIL.Image.fromarray(lbl).save(out_dir1 + '\\' + save_file_name + '_label.png') PIL.Image.fromarray(lbl_viz).save(out_dir1 + '\\' + save_file_name + '_label_viz.png') if not osp.exists(json_file + '\\' + 'mask_png'): os.mkdir(json_file + '\\' + 'mask_png') mask_save2png_path = json_file + '\\' + 'mask_png' ################################ #mask_pic = cv2.imread(out_dir1+'\\'+save_file_name+'_label.png',) #print('pic1_deep:',mask_pic.dtype) mask_dst = img_as_ubyte(lbl) #mask_pic print('pic2_deep:', mask_dst.dtype) cv2.imwrite( mask_save2png_path + '\\' + save_file_name + '_label.png', mask_dst) ################################## with open(osp.join(out_dir1, 'label_names.txt'), 'w') as f: for lbl_name in lbl_names: f.write(lbl_name + '\n') warnings.warn('info.yaml is being replaced by label_names.txt') info = dict(label_names=lbl_names) with open(osp.join(out_dir1, 'info.yaml'), 'w') as f: yaml.safe_dump(info, f, default_flow_style=False) print('Saved to: %s' % out_dir1)
def main(): warnings.warn("This script is aimed to demonstrate how to convert the\n" "JSON file to a single image dataset, and not to handle\n" "multiple JSON files to generate a real-use dataset.") parser = argparse.ArgumentParser() parser.add_argument('json_file') parser.add_argument('-o', '--out', default=None) args = parser.parse_args() json_file = args.json_file if args.out is None: out_dir = osp.basename(json_file).replace('.', '_') out_dir = osp.join(osp.dirname(json_file), out_dir) else: out_dir = args.out if not osp.exists(out_dir): os.mkdir(out_dir) data = json.load(open(json_file)) if data['imageData']: imageData = data['imageData'] else: imagePath = os.path.join(os.path.dirname(json_file), data['imagePath']) with open(imagePath, 'rb') as f: imageData = f.read() imageData = base64.b64encode(imageData).decode('utf-8') img = utils.img_b64_to_arr(imageData) label_name_to_value = {'_background_': 0} for shape in data['shapes']: label_name = shape['label'] if label_name in label_name_to_value: label_value = label_name_to_value[label_name] else: label_value = len(label_name_to_value) label_name_to_value[label_name] = label_value # label_values must be dense label_values, label_names = [], [] for ln, lv in sorted(label_name_to_value.items(), key=lambda x: x[1]): label_values.append(lv) label_names.append(ln) assert label_values == list(range(len(label_values))) lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value) captions = ['{}: {}'.format(lv, ln) for ln, lv in label_name_to_value.items()] lbl_viz = utils.draw_label(lbl, img, captions) PIL.Image.fromarray(img).save(osp.join(out_dir, 'img.png')) PIL.Image.fromarray(lbl).save(osp.join(out_dir, 'label.png')) PIL.Image.fromarray(lbl_viz).save(osp.join(out_dir, 'label_viz.png')) with open(osp.join(out_dir, 'label_names.txt'), 'w') as f: for lbl_name in label_names: f.write(lbl_name + '\n') warnings.warn('info.yaml is being replaced by label_names.txt') info = dict(label_names=label_names) with open(osp.join(out_dir, 'info.yaml'), 'w') as f: yaml.safe_dump(info, f, default_flow_style=False) print('Saved to: %s' % out_dir)
def main(): print('This script is aimed to demonstrate how to convert the' 'JSON file to a single image dataset, and not to handle' 'multiple JSON files to generate a real-use dataset.') path_file_name = glob.glob('*.json') file_num = len(path_file_name) print('INFO:There are ' + str(file_num) + ' json files') file_name = [i for i in range(file_num)] for i in range(file_num): file_name[i] = path_file_name[i].split('\\')[-1] print('INFO:' + file_name[i] + ' is dealt') data = json.load(open(path_file_name[i])) imageData = data.get('imageData') out_dir = osp.basename(path_file_name[i]).replace('.', '_') out_dir = osp.join(osp.dirname(path_file_name[i]), out_dir) if not os.path.exists(out_dir): os.mkdir(out_dir) if not imageData: imagePath = os.path.join(os.path.dirname(path_file_name[i]), data['imagePath']) with open(imagePath, 'rb') as f: imageData = f.read() imageData = base64.b64encode(imageData).decode('utf-8') img = utils.img_b64_to_arr(imageData) label_name_to_value = {'_background_': 0} for shape in sorted(data['shapes'], key=lambda x: x['label']): label_name = shape['label'] if label_name in label_name_to_value: label_value = label_name_to_value[label_name] else: label_value = len(label_name_to_value) label_name_to_value[label_name] = label_value lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value) label_names = [None] * (max(label_name_to_value.values()) + 1) for name, value in label_name_to_value.items(): label_names[value] = name lbl_viz = utils.draw_label(lbl, img, label_names) PIL.Image.fromarray(img).save(osp.join(out_dir, 'img.png')) utils.lblsave(osp.join(out_dir, 'label.png'), lbl) PIL.Image.fromarray(lbl_viz).save(osp.join(out_dir, 'label_viz.png')) with open(osp.join(out_dir, 'label_names.txt'), 'w') as f: for lbl_name in label_names: f.write(lbl_name + '\n') print('INFO:info.yaml is being replaced by label_names.txt') info = dict(label_names=label_names) with open(osp.join(out_dir, 'info.yaml'), 'w') as f: yaml.safe_dump(info, f, default_flow_style=False) print('INFO:Saved to: {}'.format('images/segmentation/test/' + file_name[i])) print('INFO:finished!')