Example #1
0
def load_cv_folds(model_name):
    models = []
    for i in range(5):
        net = np.load(paths.predictions + model_name +
                      '-split_{}.npz'.format(i))
        net = {
            'train': np.average(net['train'], axis=0),
            'val': np.average(net['val'], axis=0),
            'test': np.average(net['test'], axis=0)
        }
        models.append(net)

    labels_df = labels.get_labels_df()
    kf = sklearn.model_selection.KFold(n_splits=5,
                                       shuffle=True,
                                       random_state=1)
    split = kf.split(labels_df)
    folds = []
    for i, ((train_idx, val_idx), net) in enumerate(zip(split, models)):
        val = labels_df.ix[val_idx]
        train = labels_df.ix[train_idx]
        folds.append((net, val, train))
        print(i)

    return folds
Example #2
0
def predict_kfold(model_name, pre_transforms=[]):
    model = locate(model_name + '.generate_model')()
    random_state = locate(model_name + '.random_state')
    print('Random state: {}'.format(random_state))

    labels_df = labels.get_labels_df()
    kf = sklearn.model_selection.KFold(n_splits=5,
                                       shuffle=True,
                                       random_state=random_state)
    split = kf.split(labels_df)

    for i, (train_idx, val_idx) in enumerate(split):
        split_name = model_name + '-split_' + str(i)
        best_epoch = util.find_epoch_val(split_name)
        print('Using epoch {} for predictions'.format(best_epoch))
        epoch_name = split_name + '-epoch_' + str(best_epoch)
        train = labels_df.ix[train_idx]
        val = labels_df.ix[val_idx]
        state = torch.load(os.path.join(paths.models, split_name, epoch_name))

        predict_model(model,
                      state,
                      train,
                      val,
                      output_file=split_name,
                      pre_transforms=pre_transforms)
            pretrained_model.avgpool = nn.AvgPool2d(8)
            classifier = [
                nn.Linear(pretrained_model.fc.in_features, 17),
            ]

            self.classifier = nn.Sequential(*classifier)
            pretrained_model.fc = self.classifier

        def forward(self, x):
            return F.sigmoid(self.pretrained_model(x))

    return MyModel(torchvision.models.resnet50(pretrained=True))

random_state = 1
labels_df = labels.get_labels_df()
kf = sklearn.model_selection.KFold(n_splits=5, shuffle=True, random_state=random_state)
split = kf.split(labels_df)


def train_net(train, val, model, name):
    transformations_train = transforms.apply_chain([
        transforms.random_fliplr(),
        transforms.random_flipud(),
        transforms.augment(),
        torchvision.transforms.ToTensor()
    ])

    transformations_val = transforms.apply_chain([
        torchvision.transforms.ToTensor(),
    ])