Example #1
0
def set(in_nii, in_csv, in_labels, in_stats, in_limits,  in_sort, out_nii):

    df_stats = pd.read_csv(in_csv)

    if inArgs.labels is not None:
        df_stats = df_stats[df_stats['label'].isin(in_labels)]

    stats_list = ['label'] + sum([in_stats], [])

    if in_limits is not None:
        df_limits = df_stats[
            (df_stats[in_sort[0]] >= in_limits[0]) & (df_stats[in_sort[0]] <= in_limits[1])]
    else:
        df_limits = df_stats

    df_sorted = df_limits.sort_values(in_sort, ascending=in_sort_direction).reset_index()
    df_sorted = df_sorted.dropna()

    in_nii = labels.read_nifti_file(in_in_nii, 'Label file does not exist')
    in_array = in_nii.get_data()
    out_array = np.zeros(in_array.shape)

    for ii_label, ii_value in df_sorted[stats_list].get_values():
        out_array[in_array == ii_label] = ii_value

    nb.save(nb.Nifti1Image(out_array, [], in_nii.get_header()), in_out_nii)

    return
Example #2
0
def keep(in_nii, keep_labels, keep_csv_filename, out_filename, merge=None):

    in_label_nii = labels.read_nifti_file(in_nii, 'Label file does not exist')
    in_label_array = in_label_nii.get_data()

    if len(keep_csv_filename):
        csv_keep_labels = labels.read_labels_from_csv(keep_csv_filename)
    else:
        csv_keep_labels = []

    all_labels = set(labels.get_labels(None, in_label_array))
    keep_labels = set(
        labels.get_labels(keep_labels + csv_keep_labels, in_label_array))
    remove_labels = sorted(list(all_labels.symmetric_difference(keep_labels)))

    out_label_array = in_label_array

    for ii in remove_labels:
        mask = in_label_array == ii
        out_label_array[mask] = 0

    if merge is not None and merge != 0:  # isinstance(map, (int, long, float)) and float(map) !=0:
        out_label_array = merge * (out_label_array > 0)

    nb.save(nb.Nifti1Image(out_label_array, None, in_label_nii.get_header()),
            out_filename)
def remove(in_nii,
           remove_labels,
           remove_csv_filename,
           out_filename,
           merge=None):

    in_label_nii = labels.read_nifti_file(in_nii, 'Label file does not exist')
    in_label_array = in_label_nii.get_data()

    if len(remove_csv_filename):
        csv_remove_labels = labels.read_labels_from_csv(remove_csv_filename)
    else:
        csv_remove_labels = []

    remove_labels = set(
        labels.get_labels(remove_labels + csv_remove_labels, in_label_array))

    out_label_array = in_label_array

    for ii in remove_labels:
        mask = in_label_array == ii
        out_label_array[mask] = 0

    if merge is not None and merge != 0:  # isinstance(map, (int, long, float)) and float(map) !=0:
        out_label_array = merge * (out_label_array > 0)

    nibabel.save(
        nibabel.Nifti1Image(out_label_array, None, in_label_nii.get_header()),
        out_filename)
def extract(in_filename,
            in_csv,
            in_extract_labels,
            out_filename,
            verbose=False,
            merge=None):

    # Read in label array

    in_nii = labels.read_nifti_file(in_filename, 'Label file does not exist')
    in_array = in_nii.get_data()

    if len(in_csv):
        csv_extract_labels = labels.read_labels_from_csv(in_csv)
    else:
        csv_extract_labels = []

#     print ( inArgs.extract.shape)
#     print ( csv_extract_labels.shape)

    requested_labels = in_extract_labels + csv_extract_labels

    extract_labels = labels.get_labels(requested_labels, in_array)

    if verbose:
        print('Requested labels for extraction not found',
              list(set(requested_labels) - set(extract_labels)))

    out_array = np.zeros(in_array.shape, dtype=np.int8)

    for ii in extract_labels:
        mask = in_array == ii
        out_array[mask] = in_array[mask]

    if merge is not None and merge != 0:  # isinstance(map, (int, long, float)) and float(map) !=0:
        out_array = merge * (out_array > 0)

    nb.save(nb.Nifti1Image(out_array, None, in_nii.get_header()), out_filename)

    return
Example #5
0
def remove(in_nii, remove_labels, remove_csv_filename, out_filename):

    in_label_nii = labels.read_nifti_file(in_nii, 'Label file does not exist')
    in_label_array = in_label_nii.get_data()

    if len(remove_csv_filename):
        csv_remove_labels = labels.read_labels_from_csv(remove_csv_filename)
    else:
        csv_remove_labels = []

    remove_labels = set(
        labels.get_labels(remove_labels + csv_remove_labels, in_label_array))

    out_label_array = in_label_array

    for ii in remove_labels:
        mask = in_label_array == ii
        out_label_array[mask] = 0

    nibabel.save(
        nibabel.Nifti1Image(out_label_array, None, in_label_nii.get_header()),
        out_filename)
Example #6
0
def keep(in_nii, keep_labels, keep_csv_filename, out_filename):

    in_label_nii = labels.read_nifti_file(in_nii, 'Label file does not exist')
    in_label_array = in_label_nii.get_data()

    if len(keep_csv_filename):
        csv_keep_labels = labels.read_labels_from_csv(keep_csv_filename)
    else:
        csv_keep_labels = []

    all_labels = set(labels.get_labels(None, in_label_array))
    keep_labels = set(
        labels.get_labels(keep_labels + csv_keep_labels, in_label_array))
    remove_labels = sorted(list(all_labels.symmetric_difference(keep_labels)))

    out_label_array = in_label_array

    for ii in remove_labels:
        mask = in_label_array == ii
        out_label_array[mask] = 0

    nb.save(nb.Nifti1Image(out_label_array, None, in_label_nii.get_header()),
            out_filename)
     parser.add_argument("-v","--verbose",  help="Verbose flag",      action="store_true", default=False )
     parser.add_argument("--verbose_nlines", help="Number of lines to display (default=10)",     default=10 )

     parser.add_argument("--debug",         help="Debug flag",      action="store_true", default=False )

     inArgs = parser.parse_args()


     if inArgs.debug:

         print("inArgs.in_nii   = " +  inArgs.in_nii + '\n')
         print("inArgs.debug     = " +  str(inArgs.debug))
         print("inArgs.verbose   = " +  str(inArgs.verbose))


     label_nii    = labels.read_nifti_file( inArgs.in_nii, 'Label file does not exist' )
     label_array  = label_nii.get_data()

     labels = labels.get_labels( inArgs.labels, label_array)

     df_stats  = pd.DataFrame(columns=('label', 'com_x', 'com_y', 'com_z', 
                                       'label_volume', 'ellipsoid_volume',
                                       'center_x', 'center_y', 'center_z',
                                       'r1', 'r2', 'r3', 'fa' ))
     if inArgs.stats is not None:
         stats_list = inArgs.stats
     else:
         stats_list = list(df_stats.columns.values)

     if inArgs.verbose:
         jj=0
Example #8
0
def list_labels(in_filename):
    in_label_nii = labels.read_nifti_file(in_filename,
                                          'Label file does not exist')
    label_list = labels.get_labels(None, in_label_nii.get_data())
    return label_list
Example #9
0
def overlap( label_nii_filename, label2_nii_filename, requested_labels=[], verbose_flag=False, verbose_nlines=10, verbose_all_flag=False ):

    # Load arrays

    label_nii = labels.read_nifti_file( label_nii_filename, 'Label file does not exist' )
    label2_nii = labels.read_nifti_file( label2_nii_filename, 'Image file does not exist' )

    label_single_voxel_volume_mm3 = query_voxel_volume_mm3(label_nii)
    label2_single_voxel_volume_mm3 = query_voxel_volume_mm3(label2_nii)

    # System Checks to verify that the Array Size and Dimensions are compatible

    label_array = label_nii.get_data()
    label2_array = label2_nii.get_data()

    if len(label2_array.shape) < 2 or len(label2_array.shape) > 4:
        sys.exit('Only supports 3D and 4D image arrays')

#    if not len(label_array.shape) == 3:
#        sys.exit('Only supports 3D label arrays')

    label_ndim = len(label_array.shape)
    label2_ndim = len(label2_array.shape)

    ndim = min([label_ndim, label2_ndim])

    if not label2_array.shape[0:ndim] == label_array.shape[0:ndim]:
        sys.exit('Image array and label array do not have the same voxel dimensions')

    # Find a set of acceptable labels

    label_list = labels.get_labels( requested_labels, label_array)
    label2_list = labels.get_labels([], label2_array)

    # Gather stats

    if verbose_flag:
        ii_verbose=0
        pandas.set_option('expand_frame_repr', False)

    df_stats              = pandas.DataFrame(columns=('label1', 'label2', 'volume1_mm3',  'volume2_mm3', 'volume12_mm3',
                                                      'fraction12', 'x12_com', 'y12_com', 'z12_com'))

    for ii, ii_label in enumerate(label_list):

        mask1 = label_array[0, ...] == ii_label
        _, label1_volume_mm3 = measure_volume(mask1, label_single_voxel_volume_mm3)

        overlap_label2_list = list(numpy.unique(mask1 * label2_array))
        print(overlap_label2_list)

        for jj, jj_label in enumerate(overlap_label2_list):
        
            mask2 = label2_array[0,...] == jj_label
            mask12 = mask1 * mask2

            _, label2_volume_mm3 = measure_volume( mask2, label_single_voxel_volume_mm3)
            _, label12_volume_mm3 = measure_volume(mask12, label_single_voxel_volume_mm3)

            fraction12 = label12_volume_mm3 / label1_volume_mm3

            x12_com, y12_com, z12_com =  ndimage.measurements.center_of_mass(mask12)

            stats  = [ii_label, jj_label, label1_volume_mm3, label2_volume_mm3, label2_volume_mm3,
                      fraction12, x12_com, y12_com, z12_com ]

            if verbose_flag:
                if ii_verbose==(verbose_nlines-1):
                    df_verbose =  df_stats.tail(verbose_nlines) 
                    print('\n')
                    print (df_verbose.to_string(formatters={'label1':'{:,.0f}'.format, 'label2':'{:,.0f}'.format
                                                            'volume1':'{:,.0f}'.format, 'volume2':'{:,.0f}'.format,
                                                            'volume12':'{:,.0f}'.format,
                                                            'fraction12':'{:,.3f}'.format,
                                                            'x12_com':'{:,.0f}'.format,
                                                            'y12_com':'{:,.0f}'.format,
                                                            'z12_com':'{:,.0f}'.format}  ))
                    ii_verbose = 0
                else:
                    ii_verbose += 1
                    
            df_stats.loc[len(df_stats)] = stats
Example #10
0
def measure(label_nii_filename,
            image_nii_filename,
            requested_labels=[],
            verbose_flag=False,
            verbose_nlines=10,
            verbose_all_flag=False):

    # Load arrays

    label_nii = labels.read_nifti_file(label_nii_filename,
                                       'Label file does not exist')
    image_nii = labels.read_nifti_file(image_nii_filename,
                                       'Image file does not exist')

    # System Checks to verify that the Array Size and Dimensions are compatible

    image_array = image_nii.get_data()
    label_array = label_nii.get_data()

    if len(image_array.shape) < 2 or len(image_array.shape) > 4:
        sys.exit('Only supports 3D and 4D image arrays')

#    if not len(label_array.shape) == 3:
#        sys.exit('Only supports 3D label arrays')

    label_ndim = len(label_array.shape)
    image_ndim = len(image_array.shape)

    ndim = min([label_ndim, image_ndim])

    if not image_array.shape[0:ndim] == label_array.shape[0:ndim]:
        sys.exit(
            'Image array and label array do not have the same voxel dimensions'
        )

    # Find a set of acceptable labels

    label_list = labels.get_labels(requested_labels, label_array)

    # Permute array or expand so desired stats is along first dimension

    if image_ndim == 4:
        nVolumes = int(image_array.shape[3])
        image_array = numpy.transpose(image_array, [3, 0, 1, 2])

    elif image_ndim == 3:
        image_array = numpy.transpose(image_array, [2, 0, 1])

    else:
        nVolumes = 1
        image_array = numpy.expand_dims(image_array, axis=0)

    label_array = numpy.expand_dims(label_array, axis=0)

    # Gather stats

    if verbose_flag:
        ii_verbose = 0
        pandas.set_option('expand_frame_repr', False)

    df_stats = pandas.DataFrame(columns=('label', 'x_com', 'y_com', 'z_com',
                                         'time', 'mean', 'std', 'min', 'max'))

    nlabels = len(label_list)

    for ii, ii_label in enumerate(label_list):

        for jj in range(0, nVolumes):

            if label_ndim == 3:
                mask = label_array[0, :, :, :] == ii_label
            else:
                mask = label_array[0, :, :] == ii_label

            label_mean = numpy.mean(image_array[jj][mask])
            label_std = numpy.std(image_array[jj][mask])
            label_min = numpy.min(image_array[jj][mask])
            label_max = numpy.max(image_array[jj][mask])

            if label_ndim == 3:
                x_com, y_com, z_com = ndimage.measurements.center_of_mass(mask)
            else:
                z_com = 0
                x_com, y_com = ndimage.measurements.center_of_mass(mask)

            stats = [
                ii_label, x_com, y_com, z_com, jj, label_mean, label_std,
                label_min, label_max
            ]

            if verbose_flag and nlabels > 3 * verbose_nlines:
                if ii_verbose == (verbose_nlines - 1):
                    df_verbose = df_stats.tail(verbose_nlines)
                    print('\n')
                    print(
                        df_verbose.to_string(
                            formatters={
                                'label': '{:,.0f}'.format,
                                'volume': '{:,.0f}'.format,
                                'time': '{:,.0f}'.format,
                                'mean': '{:,.3f}'.format,
                                'std': '{:,.3f}'.format,
                                'min': '{:,.3f}'.format,
                                'max': '{:,.3f}'.format,
                                'x_com': '{:,.0f}'.format,
                                'y_com': '{:,.0f}'.format,
                                'z_com': '{:,.0f}'.format
                            }))
                    ii_verbose = 0
                else:
                    ii_verbose += 1

            df_stats.loc[len(df_stats)] = stats

    if verbose_flag:

        if verbose_all_flag:
            pandas.set_option('display.max_rows', len(df_stats))

        print('\n')

        # ['label' 'x_com' 'y_com' 'z_com' 'time' 'mean' 'std' 'min' 'max']
        print(
            df_stats.to_string(
                formatters={
                    'label': '{:,.0f}'.format,
                    'time': '{:,.0f}'.format,
                    'mean': '{:,.3f}'.format,
                    'std': '{:,.3f}'.format,
                    'min': '{:,.3f}'.format,
                    'max': '{:,.3f}'.format,
                    'x_com': '{:,.0f}'.format,
                    'y_com': '{:,.0f}'.format,
                    'z_com': '{:,.0f}'.format
                }))
        print('\n')

    return df_stats
Example #11
0
def properties(in_label_nii_filename, label_list, background, stats, out_filename, limits_volume_voxels=[0, numpy.inf],
            limits_bb_volume_voxels=[0, numpy.inf], limits_fill_factor=[0,1], sort='volume', 
            verbose=False, verbose_nlines=20):

    label_nii = labels.read_nifti_file( in_label_nii_filename, 'labels.properties.py: Label file does not exist. ')

    single_voxel_volume_mm3 = query_voxel_volume_mm3( label_nii )

    label_array = label_nii.get_data()

    label_list = labels.get_labels(label_list, label_array, background)

    df_stats = pd.DataFrame(columns=(
    'label', 'volume_voxels', 'volume_mm3', 'com_x', 'com_y', 'com_z', 'com_t', 'com_in', 'bb_dx', 'bb_dy', 'bb_dz', 'bb_dt', 'bb_dmin', 'bb_volume_voxels',
    'fill_factor'))

    stats_list = ['label', ] + list(stats)

    if verbose:
        jj = 0
        pd.set_option('expand_frame_repr', False)

    for ii in label_list:

        # Create logical mask

        mask = (label_array == ii)
        ndim = len(mask.shape)

        # Calculate Volume
        label_volume_voxels = int(numpy.sum(mask))
        label_volume_mm3    = single_voxel_volume_mm3 * label_volume_voxels

        if check_limits(label_volume_voxels, limits_volume_voxels):

            bb_dx, bb_dy, bb_dz, bb_dt, bb_dmin, bb_volume_voxels = calculate_bounding_box(mask)

            if check_limits(bb_volume_voxels, limits_bb_volume_voxels):

                label_x_com, label_y_com, label_z_com, label_t_com = calculate_center_of_mass(mask)

                if ndim == 4:
                    label_com_in = mask[label_x_com, label_y_com, label_z_com, label_t_com]
                elif ndim==3:
                    label_t_com = 0
                    label_com_in = mask[label_x_com, label_y_com, label_z_com]
                else:
                    label_z_com = label_t_com = 0
                    label_com_in = mask[label_x_com, label_y_com]

                fill_factor = label_volume_voxels / bb_volume_voxels

                if check_limits(fill_factor, limits_fill_factor):

                    label_stats = [ii, label_volume_voxels, label_volume_mm3, label_x_com, label_y_com, label_z_com, label_t_com, label_com_in, bb_dx, bb_dy,
                                   bb_dz, bb_dt, bb_dmin, bb_volume_voxels, fill_factor]

                    df_stats.loc[len(df_stats)] = label_stats

                    if verbose:
                        if jj == (verbose_nlines - 1):
                            print('\n')
                            df_verbose = df_stats.tail(verbose_nlines)
                            df_verbose = df_verbose[stats_list]
                            print(df_verbose.to_string(
                                formatters={'volume_voxels': '{:,.0f}'.format, 'volume_mm3': '{:,.3f}'.format,
                                            'com_x': '{:,.0f}'.format,
                                            'com_y': '{:,.0f}'.format, 'com_z': '{:,.0f}'.format,
                                            'com_t': '{:,.0f}'.format,
                                            'com_in': '{:,.0f}'.format, 'bb_dx': '{:,.0f}'.format,
                                            'bb_dy': '{:,.0f}'.format, 'bb_dz': '{:,.0f}'.format, 'bb_dt': '{:,.0f}'.format,
                                            'bb_volume_voxels': '{:,.0f}'.format,
                                            'fill_factor': '{:,.3f}'.format 
                                            }
                                ))

                            jj = 0
                        else:
                            jj += 1

    df_sorted = df_stats.sort_values([sort], ascending=[1]).reset_index(drop=True)

    if verbose:
        print('\n')
        print(df_sorted[stats_list])
        print('\n')

    if not out_filename == None:
        df_sorted[stats_list].to_csv(out_filename, index=False)