logger = laia.common.logging.get_logger("laia.egs.washington.train_phoc") laia.common.logging.get_logger("laia.hooks.conditions.multiple_of").setLevel( laia.common.logging.WARNING) if __name__ == "__main__": add_defaults( "gpu", "max_epochs", "max_updates", "train_samples_per_epoch", "valid_samples_per_epoch", "seed", "train_path", # Override default values for these arguments, but use the # same help/checks: learning_rate=0.0001, momentum=0.9, num_rolling_checkpoints=5, iterations_per_update=10, save_checkpoint_interval=5, show_progress_bar=True, use_distortions=True, weight_l2_penalty=0.00005, ) add_argument("--load_checkpoint", type=str, help="Path to the checkpoint to load.") add_argument("--continue_epoch", type=int) add_argument( "--phoc_levels",
for img_id, output in zip(img_ids, outputs): output = output.cpu() print(img_id, file=fileout) for t in range(output.size(0)): for k in range(output.size(1)): print( "{:d}\t{:d}\t{:d}\t0,{:.10g},{:d}".format( t, t + 1, k + 1, -float(output[t, k]), k + 1), file=fileout, ) print(output.size(0), file=fileout) print("", file=fileout) if __name__ == "__main__": add_defaults("gpu") add_argument( "--image_sequencer", type=str, default="avgpool-16", help="Average adaptive pooling of the images before the LSTM layers", ) add_argument("--lstm_hidden_size", type=int, default=128) add_argument("--lstm_num_layers", type=int, default=1) add_argument("--add_softmax", action="store_true") add_argument("syms", help="Symbols table mapping from strings to integers") add_argument("img_dir", help="Directory containing word images") add_argument("gt_file", help="") add_argument("checkpoint", help="") add_argument("output", type=argparse.FileType("w")) args = args()
x = np.asarray(x, dtype=np.float32) x = dortmund_distort(x / 255.0) if x.shape != 3: x = np.expand_dims(x, axis=-1) x = np.transpose(x, (2, 0, 1)) return torch.from_numpy(x) if __name__ == "__main__": import matplotlib.pyplot as plt import laia.random from laia.data import TextImageFromTextTableDataset, ImageDataLoader from laia.plugins.arguments import add_argument, add_defaults, args add_defaults("seed") add_argument("--num_images", type=int, help="Show only this number of images") add_argument("--shuffle", action="store_true", help="Shuffle the list of images") add_argument("img_dir", help="Directory containing images") add_argument("txt_table", help="Transcriptions of each image") args = args() laia.random.manual_seed(args.seed) dataset = TextImageFromTextTableDataset( args.txt_table, args.img_dir, img_transform=DortmundImageToTensor()) dataset_loader = ImageDataLoader(dataset=dataset, image_channels=1,