# realtime #======================== realtimedir = config.get('general', 'realtimedir') #======================== # calibration #======================== calibrationdir = config.get('general', 'calibrationdir') stride = config.getint('calibration', 'stride') delay = config.getint('calibration', 'delay') calibration_cache = dict( (classifier, idq.Cachefile( idq.cache(calibrationdir, classifier, tag='_calibration%s' % usertag))) for classifier in classifiers) kde_cache = dict( (classifier, idq.Cachefile( idq.cache( calibrationdir, classifier, tag='_calibration-kde%s' % usertag))) for classifier in classifiers) min_num_gch = config.getfloat('calibration', 'min_num_gch') min_num_cln = config.getfloat('calibration', 'min_num_cln') emaillist = config.get('warnings', 'calibration') errorthr = config.getfloat('warnings', 'calibration_errorthr') uroc_nsamples = config.getint('calibration', 'urank_nsamples')
os.makedirs(realtimedir) samples_header = config.get('realtime', 'dat_columns').split() ### headers for dat files ### slave the realtime job to the kw stride stride = int(float(kwconfig['stride']) ) ### this is given as a decimal, so we must cast as float first delay = config.getint('realtime', 'delay') ### buffer to let jobs finish #======================== # train cache #======================== traindir = config.get('general', 'traindir') train_cache = dict( (classifier, idq.Cachefile(idq.cache(traindir, classifier, tag='train'))) for classifier in classifiers) for cache in train_cache.values(): cache.time = 0 #======================== # calibration cache #======================== calibrationdir = config.get('general', 'calibrationdir') calibration_cache = dict( (classifier, idq.Cachefile(idq.cache(calibrationdir, classifier, tag='calibration'))) for classifier in classifiers) for cache in calibration_cache.values(): cache.time = 0
#======================== # train #======================== traindir = config.get('general', 'traindir') if ovl: ### need snglchandir snglchndir = config.get('general', 'snglchndir') stride = config.getint('train', 'stride') delay = config.getint('train', 'delay') #train_script = config.get('condor', 'train') train_cache = dict( (classifier, idq.Cachefile(idq.cache(traindir, classifier, tag='_train%s' % usertag))) for classifier in classifiers) build_auxmvc_vectors = mla and ( not os.path.exists(realtimedir) ) ### if realtimedir does not exist, we cannot rely on patfiles from the realtime job ### we need to build our own auxmvc_vectors max_gch_samples = config.getint("train", "max-glitch-samples") max_cln_samples = config.getint("train", "max-clean-samples") #======================== # data discovery #======================== if not opts.ignore_science_segments: ### load settings for accessing dmt segment files
clean_window = config.getfloat('realtime', 'clean_window') clean_threshold = config.getfloat('realtime', 'clean_threshold') #======================== # train #======================== traindir = config.get('general', 'traindir') if ovl: ### need snglchandir snglchndir = config.get('general', 'snglchndir') stride = config.getint('train', 'stride') delay = config.getint('train', 'delay') #train_script = config.get('condor', 'train') train_cache = dict( (classifier, idq.Cachefile(idq.cache(traindir, classifier, tag='_train%s'%usertag))) for classifier in classifiers ) build_auxmvc_vectors = mla and (not os.path.exists(realtimedir)) ### if realtimedir does not exist, we cannot rely on patfiles from the realtime job ### we need to build our own auxmvc_vectors max_gch_samples = config.getint("train", "max-glitch-samples") max_cln_samples = config.getint("train", "max-clean-samples") #======================== # data discovery #======================== if not opts.ignore_science_segments: ### load settings for accessing dmt segment files # dmt_segments_location = config.get('get_science_segments', 'xmlurl') dq_name = config.get('get_science_segments', 'include') # dq_name = config.get('get_science_segments', 'include').split(':')[1]