Example #1
0
    def _write_thresholded_label_map(self, label_map: np.ndarray, hits, out: Path):
        """
        Write a label map with only the 'hit' organs in it
        """
        if len(hits) > 0:
            # Make a copy as it may be being used elsewhere
            l = np.copy(label_map)
            # Clear any non-hits
            l[~np.isin(l, hits)] = 0

            write_array(l, out, ras=True)
Example #2
0
    def _write(self, t_stats, pvals, qvals, outdir, name):
        filtered_tstats = result_cutoff_filter(t_stats, qvals)
        filtered_result = self.rebuild_array(filtered_tstats, self.shape, self.mask)
        unfiltered_result = self.rebuild_array(t_stats, self.shape, self.mask)

        heatmap_path = outdir / f'{name}_{self.stats_name}_t_fdr5.nrrd'
        heatmap_path_unfiltered = outdir / f'{name}_{self.stats_name}_t.nrrd'

        # Write qval-filtered t-stats
        write_array(filtered_result, heatmap_path, ras=True)

        # Write raw t-stats
        write_array(unfiltered_result, heatmap_path_unfiltered, ras=True)

        return heatmap_path
Example #3
0
    def _write(self, t_stats, pvals, qvals, outdir, name):

        if self.two_way:
            pvals = np.array_split(pvals, 3)
            f_stats = np.array_split(t_stats, 3)
            qvals = np.array_split(qvals, 3)
            groups = ['geno', 'treat', 'int']

            for i, f_stat in enumerate(f_stats):

                filtered_fstats = result_cutoff_filter(f_stat, qvals[i])
                filtered_result = self.rebuild_array(filtered_fstats,
                                                     self.shape, self.mask)
                unfiltered_result = self.rebuild_array(f_stat, self.shape,
                                                       self.mask)

                heatmap_path = outdir / f'{name}_{self.stats_name}_{groups[i]}_f_fdr5.nrrd'
                heatmap_path_unfiltered = outdir / f'{name}_{self.stats_name}_{groups[i]}_f.nrrd'

                # Write qval-filtered t-stats
                write_array(filtered_result, heatmap_path, ras=True)

                # Write raw t-stats
                write_array(unfiltered_result,
                            heatmap_path_unfiltered,
                            ras=True)

        else:
            filtered_tstats = result_cutoff_filter(t_stats, qvals)
            filtered_result = self.rebuild_array(filtered_tstats, self.shape,
                                                 self.mask)
            unfiltered_result = self.rebuild_array(t_stats, self.shape,
                                                   self.mask)

            heatmap_path = outdir / f'{name}_{self.stats_name}_t_fdr5.nrrd'
            heatmap_path_unfiltered = outdir / f'{name}_{self.stats_name}_t.nrrd'

            # Write qval-filtered t-stats
            write_array(filtered_result, heatmap_path, ras=True)

            # Write raw t-stats
            write_array(unfiltered_result, heatmap_path_unfiltered, ras=True)

        return heatmap_path
Example #4
0
def _get_deformations(tform: Path,
                      deformation_dir: Path,
                      jacobian_dir: Path,
                      log_jacobians_dir: Path,
                      filetype: str,
                      specimen_id: str,
                      threads: int,
                      make_jacmat: bool,
                      write_vectors: bool = False,
                      write_raw_jacobians: bool = False,
                      write_log_jacobians: bool = True) -> Union[None, np.array]:
    """
    Generate spatial jacobians and optionally deformation files.

    Returns
    -------
    the jacobian array if there are any values < 0
    """

    cmd = ['transformix',
           '-out', str(deformation_dir),
           '-tp', str(tform),
           '-jac', 'all'
           ]

    if write_vectors:
        cmd.extend(['-def', 'all'])
    if make_jacmat:
        cmd.extend(['-jacmat', 'all'])
    if threads:
        cmd.extend(['-threads', str(threads)])

    try:
        subprocess.check_output(cmd)

    except subprocess.CalledProcessError as e:
        logging.exception('transformix failed')
        logging.exception(e)
        # raise subprocess.CalledProcessError(f'### Transformix failed ###\nError message: {e}\nelastix command:{cmd}')
        raise ValueError
    else:
        deformation_out = deformation_dir / f'deformationField.{filetype}'
        jacobian_out = deformation_dir / f'spatialJacobian.{filetype}'

        # rename and move output
        if write_vectors:
            new_def = deformation_dir / (specimen_id + '.' + filetype)
            shutil.move(deformation_out, new_def)

        new_jac = jacobian_dir / (specimen_id + '.' + filetype)

        try:
            shutil.move(jacobian_out, new_jac)
        except IOError:
            #  Bit of a hack. If trasforms conatain subtransforms from pairwise, elastix is unable to generate
            # deformation fields. So try with itk
            def_img = sitk.ReadImage(new_def)
            jac_img = sitk.DisplacementFieldJacobianDeterminant(def_img)
            sitk.WriteImage(jac_img, new_jac)

        # if we have full jacobian matrix, rename and remove that
        if make_jacmat:
            make_jacmat.mkdir()
            jacmat_file = deformation_dir / f'fullSpatialJacobian.{filetype}'  # The name given by elastix
            jacmat_new = make_jacmat / (specimen_id + '.' + filetype)           # New informative name
            shutil.move(jacmat_file, jacmat_new)

        # test if there has been any folding in the jacobians
        jac_img = sitk.ReadImage(str(new_jac))
        jac_arr = sitk.GetArrayFromImage(jac_img)
        jac_min = jac_arr.min()
        jac_max = jac_arr.max()
        logging.info("{} spatial jacobian, min:{}, max:{}".format(specimen_id, jac_min, jac_max))

        if jac_min <= 0:
            logging.warning(
                "The jacobian determinant for {} has negative values. You may need to add a penalty term to the later registration stages".format(
                    specimen_id))
            # Highlight the regions folding
            jac_arr[jac_arr > 0] = 0
            log_jac_path = log_jacobians_dir / ('ERROR_NEGATIVE_JACOBIANS_' + specimen_id + '.' + filetype)
            common.write_array(jac_arr, log_jac_path)

        elif write_log_jacobians:
            # Spit out the log transformed jacobians
            log_jac = np.log(jac_arr)
            log_jac_path = log_jacobians_dir / ( 'log_jac_' + specimen_id + '.' + filetype)

            if not write_raw_jacobians:
                new_jac.unlink()

            common.write_array(log_jac, log_jac_path)


    logging.info('Finished generating deformation fields')

    if jac_min <=0:
        return jac_arr
Example #5
0
def secondary_segmentation(config: LamaConfig):
    """
    Use user-added scripts to segment/cleanup organs

    Parameters
    ----------
    config

    Returns
    -------

    """

    plugin_dir = config.config_dir / config['seg_plugin_dir']

    if not plugin_dir.is_dir():
        logging.error(f'Cannot find plugin director: {plugin_dir}')
        return

    # Find the directories containing the segmentations
    # Get the final inversion stage
    invert_config = config['inverted_transforms'] / PROPAGATE_CONFIG
    segmentation_dir = cfg_load(invert_config)['label_propagation_order'][
        -1]  # rename to segmentation stage
    inverted_label_dir = config['inverted_labels'] / segmentation_dir
    initial_segmentation_path = next(inverted_label_dir.glob('**/*.nrrd'))

    first_reg_dir = config['root_reg_dir'] / config[
        'registration_stage_params'][0]['stage_id']  # usually rigid
    image_to_segment = next(first_reg_dir.glob('**/*.nrrd'))

    segmentations = []

    for plugin_src in [
            x for x in plugin_dir.iterdir()
            if str(x).endswith('.py') and x.name != 'plugin_interface.py'
    ]:

        # catch all exceptions as we don't want plugin crashing the pipeline
        try:
            spec = importlib.util.spec_from_file_location(
                plugin_src.stem, str(plugin_src))
            plugin = importlib.util.module_from_spec(spec)
            spec.loader.exec_module(plugin)

            new_segmetation = plugin.run(image_to_segment,
                                         initial_segmentation_path)

        except Exception as e:
            logging.error(f'Plugin {plugin_src} failed\n{e}')
        else:
            segmentations.append(new_segmetation)

    if not segmentations:
        logging.error(f'No segmentations returned from {plugin_src.name}')

    # Merge all the segmentations into a single label map. If there are any overlaps, the plugin called last will have
    # priority

    seg = None

    for s in segmentations:
        if not seg:
            seg = s
            continue
        seg[s != 0] = s[s != 0]

    additional_seg_dir = config.mkdir('additional_seg_dir')
    write_array(seg, additional_seg_dir /
                f'{config.config_dir.name}_additonal_seg.nrrd'
                )  # TODO include specimen name