def main():

    # INITIALIZE

    # User-defined parameters
    nr = 41
    nc = 61
    g = 0.8
    f = 1.0
    plot_interval = 1.0
    run_duration = 200.0
    report_interval = 5.0  # report interval, in real-time seconds
    p_init = 0.4  # probability that a cell is occupied at start
    plot_every_transition = False

    # Remember the clock time, and calculate when we next want to report
    # progress.
    current_real_time = time.time()
    next_report = current_real_time + report_interval

    # Create a grid
    hmg = HexModelGrid(nr,
                       nc,
                       1.0,
                       orientation='vertical',
                       reorient_links=True)

    # Close the grid boundaries
    #hmg.set_closed_nodes(hmg.open_boundary_nodes)

    # Set up the states and pair transitions.
    # Transition data here represent particles moving on a lattice: one state
    # per direction (for 6 directions), plus an empty state, a stationary
    # state, and a wall state.
    ns_dict = {
        0: 'empty',
        1: 'moving up',
        2: 'moving right and up',
        3: 'moving right and down',
        4: 'moving down',
        5: 'moving left and down',
        6: 'moving left and up',
        7: 'rest',
        8: 'wall'
    }
    xn_list = setup_transition_list(g, f)

    # Create data and initialize values.
    node_state_grid = hmg.add_zeros('node', 'node_state_grid')

    # Make the grid boundary all wall particles
    node_state_grid[hmg.boundary_nodes] = 8

    # Seed the grid interior with randomly oriented particles
    for i in hmg.core_nodes:
        if random.random() < p_init:
            node_state_grid[i] = random.randint(1, 7)

    # Create the CA model
    ca = OrientedHexLCA(hmg, ns_dict, xn_list, node_state_grid)

    # Create a CAPlotter object for handling screen display
    ca_plotter = CAPlotter(ca)

    # Plot the initial grid
    ca_plotter.update_plot()

    # RUN
    current_time = 0.0
    while current_time < run_duration:

        # Once in a while, print out simulation and real time to let the user
        # know that the sim is running ok
        current_real_time = time.time()
        if current_real_time >= next_report:
            print 'Current sim time', current_time, '(', 100 * current_time / run_duration, '%)'
            next_report = current_real_time + report_interval

        # Run the model forward in time until the next output step
        ca.run(current_time + plot_interval,
               ca.node_state,
               plot_each_transition=plot_every_transition,
               plotter=ca_plotter)
        current_time += plot_interval

        # Plot the current grid
        ca_plotter.update_plot()

    # FINALIZE

    # Plot
    ca_plotter.finalize()
Example #2
0
def main():
    
    # INITIALIZE
    
    # User-defined parameters
    nr = 21
    nc = 21
    plot_interval = 0.5
    run_duration = 25.0
    report_interval = 5.0  # report interval, in real-time seconds
    
    # Remember the clock time, and calculate when we next want to report
    # progress.
    current_real_time = time.time()
    next_report = current_real_time + report_interval

    # Create a grid
    hmg = HexModelGrid(nr, nc, 1.0, orientation='vertical', reorient_links=True)
    
    # Close the grid boundaries
    hmg.set_closed_nodes(hmg.open_boundary_nodes)
    
    # Set up the states and pair transitions.
    # Transition data here represent the disease status of a population.
    ns_dict = { 0 : 'fluid', 1 : 'grain' }
    xn_list = setup_transition_list()

    # Create data and initialize values. We start with the 3 middle columns full
    # of grains, and the others empty.
    node_state_grid = hmg.add_zeros('node', 'node_state_grid')
    middle = 0.25*(nc-1)*sqrt(3)
    is_middle_cols = logical_and(hmg.node_x<middle+1., hmg.node_x>middle-1.)
    node_state_grid[where(is_middle_cols)[0]] = 1
    
    # Create the CA model
    ca = OrientedHexLCA(hmg, ns_dict, xn_list, node_state_grid)
    
    # Create a CAPlotter object for handling screen display
    ca_plotter = CAPlotter(ca)
    
    # Plot the initial grid
    ca_plotter.update_plot()

    # RUN
    current_time = 0.0
    while current_time < run_duration:
        
        # Once in a while, print out simulation and real time to let the user
        # know that the sim is running ok
        current_real_time = time.time()
        if current_real_time >= next_report:
            print 'Current sim time',current_time,'(',100*current_time/run_duration,'%)'
            next_report = current_real_time + report_interval
        
        # Run the model forward in time until the next output step
        ca.run(current_time+plot_interval, ca.node_state, 
               plot_each_transition=False)
        current_time += plot_interval
        
        # Plot the current grid
        ca_plotter.update_plot()


    # FINALIZE

    # Plot
    ca_plotter.finalize()
def main():
    
    # INITIALIZE
    
    # User-defined parameters
    nr = 41
    nc = 61
    plot_interval = 1.0
    run_duration = 100.0
    report_interval = 5.0  # report interval, in real-time seconds
    p_init = 0.1  # probability that a cell is occupied at start
    plot_every_transition = False
    
    # Remember the clock time, and calculate when we next want to report
    # progress.
    current_real_time = time.time()
    next_report = current_real_time + report_interval

    # Create a grid
    hmg = HexModelGrid(nr, nc, 1.0, orientation='vertical', reorient_links=True)
    
    # Close the grid boundaries
    #hmg.set_closed_nodes(hmg.open_boundary_nodes)
    
    # Set up the states and pair transitions.
    # Transition data here represent particles moving on a lattice: one state
    # per direction (for 6 directions), plus an empty state, a stationary
    # state, and a wall state.
    ns_dict = { 0 : 'empty', 
                1 : 'moving up',
                2 : 'moving right and up',
                3 : 'moving right and down',
                4 : 'moving down',
                5 : 'moving left and down',
                6 : 'moving left and up',
                7 : 'rest',
                8 : 'wall'}
    xn_list = setup_transition_list()

    # Create data and initialize values.
    node_state_grid = hmg.add_zeros('node', 'node_state_grid', dtype=int)
    
    # Make the grid boundary all wall particles
    node_state_grid[hmg.boundary_nodes] = 8
    
    # Seed the grid interior with randomly oriented particles
    for i in hmg.core_nodes:
        if random.random()<p_init:
            node_state_grid[i] = random.randint(1, 7)
    
    # Create the CA model
    ca = OrientedHexLCA(hmg, ns_dict, xn_list, node_state_grid)
    
    # Create a CAPlotter object for handling screen display
    ca_plotter = CAPlotter(ca)
    
    # Plot the initial grid
    ca_plotter.update_plot()
    
    # Create an array to store the numbers of states at each plot interval
    nstates = zeros((9, int(run_duration/plot_interval)))
    k = 0

    # RUN
    current_time = 0.0
    while current_time < run_duration:
        
        # Once in a while, print out simulation and real time to let the user
        # know that the sim is running ok
        current_real_time = time.time()
        if current_real_time >= next_report:
            print 'Current sim time',current_time,'(',100*current_time/run_duration,'%)'
            next_report = current_real_time + report_interval
        
        # Run the model forward in time until the next output step
        ca.run(current_time+plot_interval, ca.node_state, 
               plot_each_transition=plot_every_transition, plotter=ca_plotter)
        current_time += plot_interval
        
        # Plot the current grid
        ca_plotter.update_plot()
        
        # Record numbers in each state
        nstates[:,k] = bincount(node_state_grid)
        k += 1

    # FINALIZE

    # Plot
    ca_plotter.finalize()
    
    # Display the numbers of each state
    fig, ax = subplots()
    for i in range(1, 8):
        plot(arange(plot_interval, run_duration+plot_interval, plot_interval), nstates[i,:], label=ns_dict[i])
    ax.legend()
    xlabel('Time')
    ylabel('Number of particles in state')
    title('Particle distribution by state')
    axis([0, run_duration, 0, 2*nstates[7,0]])
    show()