def create_encoder_model(self, is_training, input_ids, input_mask, segment_ids): return canine_modeling.CanineModel(config=self.model_config, atom_input_ids=input_ids, atom_input_mask=input_mask, atom_segment_ids=segment_ids, is_training=is_training)
def create_model(self, seed=None): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size, seed=seed, dynamic_batch_size=self.dynamic_batch_size) if seed is not None: seed *= 7 input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2, seed=seed, dynamic_batch_size=self.dynamic_batch_size) if seed is not None: seed *= 5 token_type_ids = ids_tensor( [self.batch_size, self.seq_length], self.type_vocab_size, seed=seed, dynamic_batch_size=self.dynamic_batch_size) config = modeling.CanineModelConfig( hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, max_positions=self.max_position_embeddings, downsampling_rate=self.downsampling_rate) model = modeling.CanineModel(config=config, atom_input_ids=input_ids, atom_input_mask=input_mask, atom_segment_ids=token_type_ids, is_training=self.is_training) outputs = { "pooled_output": model.get_pooled_output(), "sequence_output": model.get_sequence_output(), "downsampled_layers": model.get_downsampled_layers(), } return outputs