Example #1
0
 def create_encoder_model(self, is_training, input_ids, input_mask,
                          segment_ids):
     return canine_modeling.CanineModel(config=self.model_config,
                                        atom_input_ids=input_ids,
                                        atom_input_mask=input_mask,
                                        atom_segment_ids=segment_ids,
                                        is_training=is_training)
Example #2
0
        def create_model(self, seed=None):
            input_ids = ids_tensor([self.batch_size, self.seq_length],
                                   self.vocab_size,
                                   seed=seed,
                                   dynamic_batch_size=self.dynamic_batch_size)

            if seed is not None:
                seed *= 7

            input_mask = ids_tensor([self.batch_size, self.seq_length],
                                    vocab_size=2,
                                    seed=seed,
                                    dynamic_batch_size=self.dynamic_batch_size)

            if seed is not None:
                seed *= 5

            token_type_ids = ids_tensor(
                [self.batch_size, self.seq_length],
                self.type_vocab_size,
                seed=seed,
                dynamic_batch_size=self.dynamic_batch_size)

            config = modeling.CanineModelConfig(
                hidden_size=self.hidden_size,
                num_hidden_layers=self.num_hidden_layers,
                num_attention_heads=self.num_attention_heads,
                intermediate_size=self.intermediate_size,
                max_positions=self.max_position_embeddings,
                downsampling_rate=self.downsampling_rate)

            model = modeling.CanineModel(config=config,
                                         atom_input_ids=input_ids,
                                         atom_input_mask=input_mask,
                                         atom_segment_ids=token_type_ids,
                                         is_training=self.is_training)

            outputs = {
                "pooled_output": model.get_pooled_output(),
                "sequence_output": model.get_sequence_output(),
                "downsampled_layers": model.get_downsampled_layers(),
            }
            return outputs