def eval_segment_best_possible(): ds = PascalSegmentation() print("loading") data = load_pascal('train') print("getting edges") data = add_edges(data) print("computing segments") segments = [get_km_segments(x, ds.get_image(image_name), sps, n_segments=25) for x, image_name, sps in zip(data.X, data.file_names, data.superpixels)] print("combining superpixels") segments = [seg[sp] for seg, sp in zip(segments, data.superpixels)] predictions = [gt_in_sp(ds, f, seg)[seg] for seg, f in zip(segments, data.file_names)] Y_true = [ds.get_ground_truth(f) for f in data.file_names] hamming, jaccard = eval_on_pixels(ds, Y_true, predictions, print_results=True) tracer()
def eval_pixel_prediction(): data = load_pascal_pixelwise('val') predictions = [np.argmax(x, axis=-1) for x in data.X] hamming, jaccard = eval_on_pixels(data.Y, predictions, print_results=True) tracer()
def eval_pixel_prediction(): dataset = NYUSegmentation() data = load_nyu_pixelwise('val') predictions = [np.argmax(x, axis=-1) for x in data.X] hamming, jaccard = eval_on_pixels(dataset, data.Y, predictions, print_results=True)
def eval_pixel_prediction(): dataset = NYUSegmentation() data = load_nyu_pixelwise("val") predictions = [np.argmax(x, axis=-1) for x in data.X] hamming, jaccard = eval_on_pixels(dataset, data.Y, predictions, print_results=True)