Example #1
0
    def __init__(self, model_file, mother=mother, super_cell_flag=False):
        '''
        loading the regression results
        '''
        self.mother = mother

        # The flag to inluce 1NN and edges shorter than 1NN
        NN1 = 1
        [
            self.Gcv, self.J, self.intercept, self.RMSE_test_atom,
            self.RMSE_test_site
        ] = pickle.load(open(model_file, "rb"))

        self.super_cell_flag = super_cell_flag

        # Initialize graph object
        self.Graphs = lf.initialize_graph_object(self.mother, dz, NN1=1)

        # Initialize calculation object

        empty = 'grey'
        filled = 'r'
        occ = [empty, filled]
        self.Cal = lf.calculations(occ)
        self.Gm = self.Graphs.Gm
Example #2
0
#%%
'''
Read the json files
Creat pi matrix
size of number of configuration * numbers of clusters
'''

empty = 'grey'
filled = 'r'
occ = [empty, filled]

# Initialize the cluster object and isomorphs object
Graphs = lf.initialize_graph_object(mother, dz)

with open('clusters.json') as f:
    Gcv = json.load(f)['Gcv']

with open(json_name) as f:
    ES_data = json.load(f)

config_batch_i = ES_data['config_iso']

Graphs.get_configs(config_batch_i)
Gsv = Graphs.Gsv

Cal = lf.calculations(occ)
#pi =  Cal.get_pi_matrix_l(Gsv ,Gcv)
#np.save(pi_name, pi, allow_pickle = True)

pi = np.load('pi_iso_1.npy')