def convolve(self, image, training, keep_prob):
     result = image
     result = layer.batch_normalization(result, training)
     result = layer.conv(result, 1, 16, width=5, stride=2, padding="VALID")
     result = tf.nn.tanh(result)
     result = layer.conv(result, 16, 16, width=3, stride=2, padding="VALID")
     result = tf.nn.tanh(result)
     result = layer.conv(result, 16, 32, width=3, padding="VALID")
     result = tf.nn.tanh(result)
     result = layer.conv(result, 32, 32, width=3, padding="VALID")
     result = tf.nn.tanh(result)
     result = tf.nn.dropout(result, keep_prob)
     result = layer.conv_relu(result, 32, 10, width=1, padding="VALID")
     return result
Example #2
0
 def buildResNet(self, inputs, n, is_training):
     filters = [16, 32, 64]
     inputs = tf.reshape(inputs,
                         shape=(-1, image_width, image_height, image_depth))
     #Conv1_x
     x = layer.conv(inputs, [3, 3, 3, 16], strides=1, name="Conv1")
     #Conv2_x
     #x = layer.maxpool(x, win_size=3, strides=2, name="Conv2_Pool1")
     for i in range(n):
         x = layer.res_block(x,
                             16,
                             is_training=is_training,
                             name="Conv2_Res" + str(i))
     #Conv3_x
     for i in range(n):
         x = layer.res_block(x,
                             32,
                             is_training=is_training,
                             name="Conv3_Res" + str(i))
     #Conv4_x
     for i in range(n):
         x = layer.res_block(x,
                             64,
                             is_training=is_training,
                             name="Conv4_Res" + str(i))
     #x = layer.avgpool(x, win_size=7, strides=7, name="Global_avgpool")
     x = layer.avgpool(x, win_size=8, strides=8, name="Global_avgpool")
     reshaped_x = tf.reshape(x, [-1, filters[2]])
     x = layer.fc(reshaped_x, output_dim=num_classes, name="FC")
     return x
Example #3
0
def decode(image, layers_in, layers_out=0, width=5, reuse=True):
    with tf.variable_scope("deconv" + str(layers_in), reuse=reuse):
        layers_out = layers_in / 2 if layers_out == 0 else layers_out
        image = layer.upscaleFlat(image, scale=2)
        image = layer.conv(image, layers_in, layers_out, width=width, name="stage1")
        logits = image
        image = tf.tanh(image)
        return image , logits
 def convolve(self, image, training, keep_prob):
     result = layer.batch_normalization(image, training)
     result = layer.conv_relu(result, 1, 18, width=5, padding="VALID")
     result = layer.max_pool(result)  # 12
     result = layer.conv_relu(result, 18, 24, width=5, padding="VALID")
     result = layer.max_pool(result)  # 4
     result = tf.nn.dropout(result, keep_prob)
     return layer.conv(result, 24, 10, width=4, padding="VALID")
 def convolve(self, image, training, keep_prob):
     result = layer.conv_relu(image,
                              1,
                              18,
                              width=5,
                              stride=2,
                              padding="VALID")
     return layer.conv(result, 18, 10, width=12, padding="VALID")
 def convolve(self, image, training, keep_prob):
     result = layer.batch_normalization(image, training)
     result = layer.conv_relu(result, 1, 18, width=5)
     result = layer.max_pool(result)  # 14
     result = tf.nn.relu(drop_conv(keep_prob, result, 18, 24, width=5))
     result = layer.max_pool(result)  # 7
     result = tf.nn.relu(
         drop_conv(keep_prob, result, 24, 32, width=5, padding="VALID"))
     return layer.conv(result, 32, 10, width=3, padding="VALID")
def buildNet(iSize, layerDescription, seedNum=None):
    #in:
    #tuple iSize = (ix, iy, iz): input size
    #list layerDescription = [(type, arg)]: config of layers
    #uint seedNum: init np.random
    #out:
    #list layerList = [layer.layer]: network layers

    #init random seed
    if seedNum is None:
        pass
    else:
        tools.setNpSeed(seedNum)

    #build layer
    tx, ty, tz = iSize
    layerList = []
    for layerType, layerArg in layerDescription:
        if layerType == 'c':
            kernelNum, padSize, stepLen, kernelSize = layerArg
            ox = (tx - kernelSize[0] + 2 * padSize) // stepLen + 1
            oy = (ty - kernelSize[1] + 2 * padSize) // stepLen + 1
            oz = kernelNum
            layerList.append(
                layer.conv((tx, ty, tz), (ox, oy, oz), kernelNum, padSize,
                           stepLen, kernelSize))
        elif layerType == 'a':
            func, = layerArg
            ox = tx
            oy = ty
            oz = tz
            layerList.append(layer.active((tx, ty, tz), (ox, oy, oz), func))
        elif layerType == 'p':
            stepLen, func = layerArg
            ox = tx // stepLen
            oy = ty // stepLen
            oz = tz
            layerList.append(
                layer.pool((tx, ty, tz), (ox, oy, oz), stepLen, func))
        elif layerType == 'f':
            kernelNum, = layerArg
            ox = 1
            oy = 1
            oz = kernelNum
            layerList.append(layer.fullC((tx, ty, tz), (ox, oy, oz),
                                         kernelNum))
        else:
            print('E: network.buildNet: worng layerType')
        tx, ty, tz = ox, oy, oz
    return layerList
 def convolve(self, image, training, keep_prob):
     result = layer.batch_normalization(image, training)
     result = layer.conv_relu(result, 1, 18, width=5)
     result = layer.resnet_block(result, 18, 3, training, momentum=0.99)
     result = layer.max_pool(result)  # 14
     result = layer.resnet_block(result, 18, 3, training, momentum=0.99)
     result = layer.conv_relu(result, 18, 24, width=5)
     result = layer.resnet_block(result, 24, 3, training, momentum=0.99)
     result = layer.max_pool(result)  # 7
     result = layer.resnet_block(result, 24, 3, training, momentum=0.99)
     result = layer.conv_relu(result, 24, 32, width=5, padding="VALID")
     result = layer.resnet_block(result, 32, 3, training, momentum=0.99)
     result = tf.nn.dropout(result, keep_prob)
     return layer.conv(result, 32, 10, width=3, padding="VALID")
Example #9
0
def build(input, input_chanel, num_output):
    section1 = layer.conv(input,
                          input_chanel=input_chanel,
                          num_output=64,
                          kernel_size=1,
                          stride=1,
                          'SAME')

    section2 = layer.conv(input,
                          input_chanel=input_chanel,
                          num_output=96,
                          kernel_size=1,
                          stride=1,
                          'SAME')
    section2 = layer.conv(section2,
                          input_chanel=96,
                          num_output=128,
                          kernel_size=3,
                          stride=1,
                          'SAME')

    section3 = layer.conv(input,
                          input_chanel=input_chanel,
                          num_output=16,
                          kernel_size=1,
                          stride=1,
                          'SAME')
    section3 = layer.conv(input,
                          input_chanel=16,
                          num_output=32,
                          kernel_size=5,
                          stride=1,
                          'SAME')

    section4 = layer.max_pooling(input)
    section4 = layer.conv(input,
                          input_chanel=input_chanel,
                          num_output=32,
                          kernel_size=1,
                          stride=1,
                          'SAME')

    return tf.concat([section1, section2, section3, section4], 3)
Example #10
0
 def convolve(self, image, training, keep_prob):
     result = layer.conv_relu(image, 1, 24, width=28, padding="VALID")
     result = tf.nn.dropout(result, keep_prob)
     return layer.conv(result, 24, 10, width=1, padding="VALID")
Example #11
0
def encode(image, layers_in, layers_out=0, width=5, reuse=True):
    with tf.variable_scope("conv" + str(layers_in), reuse=reuse):
        layers_out = layers_in * 2 if layers_out == 0 else layers_out
        image = layer.conv(image, layers_in, layers_out, stride=2, width=width, name="stage1")
        image = tf.tanh(image)
        return image
 def convolve(self, image, training, keep_prob):
     return layer.conv(image, 1, 10, width=28, padding="VALID")