Example #1
0
    def test_train_step(self):
        input = torch.randint(0, 24, (8, 128)).long().to(device)
        input_lengths = torch.randint(100, 128, (8, )).long().to(device)
        input_lengths = torch.sort(input_lengths, descending=True)[0]
        mel_spec = torch.rand(8, 30, c.audio['num_mels']).to(device)
        mel_postnet_spec = torch.rand(8, 30, c.audio['num_mels']).to(device)
        mel_lengths = torch.randint(20, 30, (8, )).long().to(device)
        stop_targets = torch.zeros(8, 30, 1).float().to(device)

        for idx in mel_lengths:
            stop_targets[:, int(idx.item()):, 0] = 1.0

        stop_targets = stop_targets.view(input.shape[0],
                                         stop_targets.size(1) // c.r, -1)
        stop_targets = (stop_targets.sum(2) >
                        0.0).unsqueeze(2).float().squeeze()

        criterion = MSELossMasked().to(device)
        criterion_st = nn.BCEWithLogitsLoss().to(device)
        model = Tacotron2(24, c.r).to(device)
        model.train()
        model_ref = copy.deepcopy(model)
        count = 0
        for param, param_ref in zip(model.parameters(),
                                    model_ref.parameters()):
            assert (param - param_ref).sum() == 0, param
            count += 1
        optimizer = optim.Adam(model.parameters(), lr=c.lr)
        for i in range(5):
            mel_out, mel_postnet_out, align, stop_tokens = model.forward(
                input, input_lengths, mel_spec)
            assert torch.sigmoid(stop_tokens).data.max() <= 1.0
            assert torch.sigmoid(stop_tokens).data.min() >= 0.0
            optimizer.zero_grad()
            loss = criterion(mel_out, mel_spec, mel_lengths)
            stop_loss = criterion_st(stop_tokens, stop_targets)
            loss = loss + criterion(mel_postnet_out, mel_postnet_spec,
                                    mel_lengths) + stop_loss
            loss.backward()
            optimizer.step()
        # check parameter changes
        count = 0
        for param, param_ref in zip(model.parameters(),
                                    model_ref.parameters()):
            # ignore pre-higway layer since it works conditional
            # if count not in [145, 59]:
            assert (param != param_ref).any(
            ), "param {} with shape {} not updated!! \n{}\n{}".format(
                count, param.shape, param, param_ref)
            count += 1
Example #2
0
def main(args):
    # DISTRUBUTED
    if num_gpus > 1:
        init_distributed(args.rank, num_gpus, args.group_id,
                         c.distributed["backend"], c.distributed["url"])
    num_chars = len(phonemes) if c.use_phonemes else len(symbols)
    model = setup_model(num_chars, c, args.use_half)

    print(" | > Num output units : {}".format(ap.num_freq), flush=True)

    if args.use_half:
        print(' | > Use half mode')

    optimizer_eps = 1e-08 if not args.use_half else 1e-04
    optimizer = optim.Adam(model.parameters(),
                           lr=c.lr,
                           weight_decay=0,
                           eps=optimizer_eps)
    # optimizer = optim.SGD(model.parameters(), lr=c.lr, weight_decay=0)
    if c.stopnet and c.separate_stopnet:
        optimizer_st = optim.Adam(model.decoder.stopnet.parameters(),
                                  lr=c.lr,
                                  weight_decay=0,
                                  eps=optimizer_eps)
        # optimizer_st = optim.SGD(model.decoder.stopnet.parameters(), lr=c.lr, weight_decay=0)
    else:
        optimizer_st = None

    if c.loss_masking:
        criterion = L1LossMasked() if c.model == "Tacotron" else MSELossMasked(
        )
    else:
        criterion = nn.L1Loss() if c.model == "Tacotron" else nn.MSELoss()
    criterion_st = nn.BCEWithLogitsLoss() if c.stopnet else None

    if args.restore_path:
        checkpoint = torch.load(args.restore_path)
        try:
            # TODO: fix optimizer init, model.cuda() needs to be called before
            # optimizer restore
            # optimizer.load_state_dict(checkpoint['optimizer'])
            if len(c.reinit_layers) > 0:
                raise RuntimeError
            model.load_state_dict(checkpoint['model'])
        except:
            print(" > Partial model initialization.")
            partial_init_flag = True
            model_dict = model.state_dict()
            model_dict = set_init_dict(model_dict, checkpoint, c)
            model.load_state_dict(model_dict)
            del model_dict
        for group in optimizer.param_groups:
            group['lr'] = c.lr
        print(" > Model restored from step %d" % checkpoint['step'],
              flush=True)
        start_epoch = checkpoint['epoch']
        args.restore_step = checkpoint['step']
    else:
        args.restore_step = 0

    # use half mode
    if args.use_half:
        model.half()
        for layer in model.modules():
            if isinstance(layer, torch.nn.BatchNorm1d):
                layer.float()

    if use_cuda:
        model = model.cuda()
        criterion.cuda()
        if criterion_st: criterion_st.cuda()
        if args.restore_path:
            # print(checkpoint['optimizer'])
            # print('---opt', optimizer)
            optimizer.load_state_dict(checkpoint['optimizer'])

    # DISTRUBUTED
    if num_gpus > 1:
        model = apply_gradient_allreduce(model)

    # reset lr
    if args.reset_lr:
        for group in optimizer.param_groups:
            group['initial_lr'] = c.lr

    if c.lr_decay:
        scheduler = NoamLR(
            optimizer,
            warmup_steps=c.warmup_steps,
            last_epoch=args.restore_step - 1,
            use_half=args.use_half,
        )
    else:
        scheduler = None

    num_params = count_parameters(model)
    print("\n > Model has {} parameters".format(num_params), flush=True)

    if 'best_loss' not in locals():
        best_loss = float('inf')

    for epoch in range(0, c.epochs):
        train_loss, current_step = train(model, criterion, criterion_st,
                                         optimizer, optimizer_st, scheduler,
                                         ap, epoch, args.use_half)
        if c.run_eval:
            val_loss = evaluate(model, criterion, criterion_st, ap,
                                current_step, epoch, args.use_half)
            print(
                " | > Training Loss: {:.5f}   Validation Loss: {:.5f}".format(
                    train_loss, val_loss),
                flush=True)
            target_loss = val_loss
        else:
            print(" | > Training Loss: {:.5f}".format(train_loss), flush=True)
            target_loss = train_loss
        best_loss = save_best_model(model, optimizer, target_loss, best_loss,
                                    OUT_PATH, current_step, epoch)
Example #3
0
File: train.py Project: geneing/TTS
def main(args): #pylint: disable=redefined-outer-name
    # Audio processor
    ap = AudioProcessor(**c.audio)

    # DISTRUBUTED
    if num_gpus > 1:
        init_distributed(args.rank, num_gpus, args.group_id,
                         c.distributed["backend"], c.distributed["url"])
    num_chars = len(phonemes) if c.use_phonemes else len(symbols)

    if c.use_speaker_embedding:
        speakers = get_speakers(c.data_path, c.meta_file_train, c.dataset)
        if args.restore_path:
            prev_out_path = os.path.dirname(args.restore_path)
            speaker_mapping = load_speaker_mapping(prev_out_path)
            assert all([speaker in speaker_mapping
                        for speaker in speakers]), "As of now you, you cannot " \
                                                   "introduce new speakers to " \
                                                   "a previously trained model."
        else:
            speaker_mapping = {name: i
                               for i, name in enumerate(speakers)}
        save_speaker_mapping(OUT_PATH, speaker_mapping)
        num_speakers = len(speaker_mapping)
        print("Training with {} speakers: {}".format(num_speakers,
                                                     ", ".join(speakers)))
    else:
        num_speakers = 0

    model = setup_model(num_chars, num_speakers, c)

    print(" | > Num output units : {}".format(ap.num_freq), flush=True)

    #optimizer = optim.Adam(model.parameters(), lr=c.lr, weight_decay=0)
    optimizer = Ranger(model.parameters(), lr=c.lr, weight_decay=c.wd)
    optimizer_gst = Ranger(model.textgst.parameters(), lr=c.lr, weight_decay=c.wd) if c.text_gst else None

    if c.stopnet and c.separate_stopnet:
        optimizer_st = Ranger(model.decoder.stopnet.parameters(), lr=c.lr)
    else:
        optimizer_st = None

    if c.loss_masking:
        criterion = L1LossMasked() if c.model in ["Tacotron", "TacotronGST"] else MSELossMasked()
    else:
        criterion = nn.L1Loss() if c.model in ["Tacotron", "TacotronGST"] else nn.MSELoss()
    criterion_st = nn.BCEWithLogitsLoss() if c.stopnet else None
    criterion_gst = nn.L1Loss() if c.text_gst else None

    if args.restore_path:
        checkpoint = torch.load(args.restore_path)
        try:
            # TODO: fix optimizer init, model.cuda() needs to be called before
            # optimizer restore
            # optimizer.load_state_dict(checkpoint['optimizer'])
            if c.reinit_layers:
                raise RuntimeError
            model.load_state_dict(checkpoint['model'])
        except:
            print(" > Partial model initialization.")
            model_dict = model.state_dict()
            model_dict = set_init_dict(model_dict, checkpoint, c)
            model.load_state_dict(model_dict)
            del model_dict
        for group in optimizer.param_groups:
            group['lr'] = c.lr
        print(
            " > Model restored from step %d" % checkpoint['step'], flush=True)
        args.restore_step = checkpoint['step']
    else:
        args.restore_step = 0

    if use_cuda:
        model = model.cuda()
        criterion.cuda()
        if criterion_st:
            criterion_st.cuda()

    # DISTRUBUTED
    if num_gpus > 1:
        model = apply_gradient_allreduce(model)

    if c.lr_decay:
        scheduler = NoamLR(
            optimizer,
            warmup_steps=c.warmup_steps,
            last_epoch=args.restore_step - 1)
    else:
        scheduler = None

    num_params = count_parameters(model)
    print("\n > Model has {} parameters".format(num_params), flush=True)

    if 'best_loss' not in locals():
        best_loss = float('inf')

    global_step = args.restore_step
    for epoch in range(0, c.epochs):
        # set gradual training
        if c.gradual_training is not None:
            r, c.batch_size = gradual_training_scheduler(global_step, c)
            c.r = r
            model.decoder.set_r(r)
        print(" > Number of outputs per iteration:", model.decoder.r)

        train_loss, global_step = train(model, criterion, criterion_st,
                                        optimizer, optimizer_st, scheduler,
                                        ap, global_step, epoch, criterion_gst=criterion_gst, optimizer_gst=optimizer_gst)
        
        if epoch % 5 == 0:
            val_loss = evaluate(model, criterion, criterion_st, criterion_gst, ap, global_step, epoch)
            print(
                " | > Training Loss: {:.5f}   Validation Loss: {:.5f}".format(
                    train_loss, val_loss),
                flush=True)
            target_loss = train_loss
            if c.run_eval:
                target_loss = val_loss
            best_loss = save_best_model(model, optimizer, optimizer_st, optimizer_gst, target_loss, best_loss,
                                        OUT_PATH, global_step, epoch)
Example #4
0
def main(args):
    # DISTRUBUTED
    if num_gpus > 1:
        init_distributed(args.rank, num_gpus, args.group_id,
                         c.distributed["backend"], c.distributed["url"])
    num_chars = len(phonemes) if c.use_phonemes else len(symbols)
    model = MyModel(num_chars=num_chars, r=c.r, attn_norm=c.attention_norm)

    print(" | > Num output units : {}".format(ap.num_freq), flush=True)

    optimizer = optim.Adam(model.parameters(), lr=c.lr, weight_decay=0)
    optimizer_st = optim.Adam(
        model.decoder.stopnet.parameters(), lr=c.lr, weight_decay=0)

    criterion = L1LossMasked() if c.model == "Tacotron" else MSELossMasked()
    criterion_st = nn.BCEWithLogitsLoss()

    if args.restore_path:
        checkpoint = torch.load(args.restore_path)
        try:
            # TODO: fix optimizer init, model.cuda() needs to be called before
            # optimizer restore
            # optimizer.load_state_dict(checkpoint['optimizer'])
            if len(c.reinit_layers) > 0:
                raise RuntimeError
            model.load_state_dict(checkpoint['model'])
        except:
            print(" > Partial model initialization.")
            partial_init_flag = True
            model_dict = model.state_dict()
            model_dict = set_init_dict(model_dict, checkpoint, c)
            model.load_state_dict(model_dict)
            del model_dict
        if use_cuda:
            model = model.cuda()
            criterion.cuda()
            criterion_st.cuda()
        for group in optimizer.param_groups:
            group['lr'] = c.lr
        print(
            " > Model restored from step %d" % checkpoint['step'], flush=True)
        start_epoch = checkpoint['epoch']
        # best_loss = checkpoint['postnet_loss']
        args.restore_step = checkpoint['step']
    else:
        args.restore_step = 0
        if use_cuda:
            model = model.cuda()
            criterion.cuda()
            criterion_st.cuda()

    # DISTRUBUTED
    if num_gpus > 1:
        model = apply_gradient_allreduce(model)

    if c.lr_decay:
        scheduler = NoamLR(
            optimizer,
            warmup_steps=c.warmup_steps,
            last_epoch=args.restore_step - 1)
    else:
        scheduler = None

    num_params = count_parameters(model)
    print("\n > Model has {} parameters".format(num_params), flush=True)

    if 'best_loss' not in locals():
        best_loss = float('inf')

    for epoch in range(0, c.epochs):
        train_loss, current_step = train(model, criterion, criterion_st,
                                         optimizer, optimizer_st, scheduler,
                                         ap, epoch)
        val_loss = evaluate(model, criterion, criterion_st, ap, current_step, epoch)
        print(
            " | > Training Loss: {:.5f}   Validation Loss: {:.5f}".format(
                train_loss, val_loss),
            flush=True)
        target_loss = train_loss
        if c.run_eval:
            target_loss = val_loss
        best_loss = save_best_model(model, optimizer, target_loss, best_loss,
                                    OUT_PATH, current_step, epoch)