Example #1
0
    def _match(self):
        """
		The core of RC model, get the question-aware passage encoding with either BIDAF or MLSTM
		"""
        with tf.variable_scope('match'):
            if self.algo == 'MLSTM':
                match_layer = MatchLSTMLayer(self.hidden_size)
            elif self.algo == 'BIDAF':
                match_layer = AttentionFlowMatchLayer(self.hidden_size)
            else:
                raise NotImplementedError(
                    'The algorithm {} is not implemented.'.format(self.algo))
            self.match_p_encodes, _ = match_layer.match(
                self.sep_p_encodes, self.sep_q_encodes, self.p_t_length,
                self.q_t_length)

            self.match_p_encodes, _ = rnn('bi-lstm',
                                          self.match_p_encodes,
                                          self.p_t_length,
                                          self.hidden_size,
                                          layer_num=1)

            if self.use_dropout:
                self.match_p_encodes = tf.nn.dropout(self.match_p_encodes,
                                                     self.dropout_keep_prob)
Example #2
0
    def _match(self):

        if self.algo == 'MLSTM':
            match_layer = MatchLSTMLayer(self.hidden_size)
        elif self.algo == 'BIDAF':
            match_layer = AttentionFlowMatchLayer5(self.hidden_size)
        else:
            raise NotImplementedError('The algorithm {} is not implemented.'.format(self.algo))

        self.match_p_encodes, _ = match_layer.match(self.sep_p_encodes, self.sep_q_encodes,self.c_mask,self.q_mask,1-self.dropout,self.p_length, self.q_length)
Example #3
0
 def _match(self):
     """
     The core of QDR model, get the query-aware passage encoding with either BIDAF or MLSTM
     """
     if self.algo == 'MLSTM':
         match_layer = MatchLSTMLayer(self.hidden_size)
     elif self.algo == 'BIDAF':
         match_layer = AttentionFlowMatchLayer(self.hidden_size)
     else:
         raise NotImplementedError('The algorithm {} is not implemented.'.format(self.algo))
     self.match_p_encodes, _ = match_layer.match(self.sep_p_encodes, self.sep_q_encodes,
                                                 self.p_length, self.q_length)
     if self.use_dropout:
         self.match_p_encodes = tf.nn.dropout(self.match_p_encodes, self.dropout_keep_prob)
Example #4
0
 def _match(self):
     """
     The core of RC model, get the question-aware passage encoding with either BIDAF or MLSTM
     """
     if self.algo == 'MLSTM':
         match_layer = MatchLSTMLayer(self.hidden_size)
     elif self.algo == 'BIDAF':
         match_layer = AttentionFlowMatchLayer(self.hidden_size)
     else:
         raise NotImplementedError('The algorithm {} is not implemented.'.format(self.algo))
     self.match_p_encodes, _ = match_layer.match(self.sep_p_encodes, self.sep_q_encodes,
                                                 self.p_length, self.q_length)
     if self.use_dropout:
         self.match_p_encodes = tf.nn.dropout(self.match_p_encodes, self.dropout_keep_prob)
Example #5
0
    def _match(self):
        """
        阅读理解模型的核心.使用BiDAF或MLSTM来获取文章对问题的感知情况
        """
        if self.algo == 'MLSTM':
            match_layer = MatchLSTMLayer(self.hidden_size)
        elif self.algo == 'BIDAF':
            match_layer = AttentionFlowMatchLayer(self.hidden_size)

        self.match_p_encodes, self.context2question_attn, self.question2context_attn, _ = match_layer.match(
            self.sep_p_encodes, self.sep_q_encodes, self.p_length,
            self.q_length)

        if self.use_dropout:
            self.match_p_encodes = tf.nn.dropout(self.match_p_encodes,
                                                 self.dropout_keep_prob)
Example #6
0
    def _self_att(self):
        """
		Self attention layer
		"""
        with tf.variable_scope('self_att'):
            if self.algo == 'MLSTM':
                self_att_layer = MatchLSTMLayer(self.hidden_size)
            elif self.algo == 'BIDAF':
                self_att_layer = AttentionFlowMatchLayer(self.hidden_size)
            else:
                raise NotImplementedError(
                    'The algorithm {} is not implemented.'.format(self.algo))
            self.self_att_p_encodes, _ = self_att_layer.match(
                self.match_p_encodes, self.match_p_encodes, self.p_t_length,
                self.p_t_length)
            if self.use_dropout:
                self.self_att_p_encodes = tf.nn.dropout(
                    self.self_att_p_encodes, self.dropout_keep_prob)
Example #7
0
 def _match(self):
     """
     The core of RC model, get the question-aware passage encoding with either BIDAF or MLSTM
     """
     if self.simple_net in [0]:
         return
     if self.algo == 'MLSTM':
         match_layer = MatchLSTMLayer(self.hidden_size)
     elif self.algo == 'BIDAF':
         match_layer = AttentionFlowMatchLayer(self.hidden_size)
     else:
         raise NotImplementedError(
             'The algorithm {} is not implemented.'.format(self.algo))
     self.match_p_encodes, self.sim_matrix, self.context2question_attn, self.b, self.question2context_attn = match_layer.match(
         self.sep_p_encodes, self.sep_q_encodes, self.p_length,
         self.q_length)
     if self.use_dropout:
         self.match_p_encodes = tf.nn.dropout(self.match_p_encodes,
                                              self.dropout_keep_prob)
Example #8
0
    def _match(self):

        if self.algo == 'MLSTM':
            match_layer = MatchLSTMLayer(self.hidden_size)
        elif self.algo == 'BIDAF':
            match_layer = AttentionFlowMatchLayer(self.hidden_size)
        else:
            raise NotImplementedError(
                'The algorithm {} is not implemented.'.format(self.algo))

        self.match_p_encodes, _ = match_layer.match(self.sep_p_encodes,
                                                    self.sep_q_encodes,
                                                    self.p_length,
                                                    self.q_length)
        self.match_p_encodes = tf.layers.dense(self.match_p_encodes,
                                               self.hidden_size * 2,
                                               activation=tf.nn.relu)

        if self.use_dropout:
            self.match_p_encodes = tf.nn.dropout(self.match_p_encodes,
                                                 1 - self.dropout)
Example #9
0
#!/usr/bin/python3