def build_model(): ################# # Regular model # ################# input_size = data_sizes["sliced:data:singleslice"] l0 = nn.layers.InputLayer(input_size) l1a = nn.layers.dnn.Conv2DDNNLayer(l0 , filter_size=(3,3), num_filters=64, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l1b = nn.layers.dnn.Conv2DDNNLayer(l1a, filter_size=(3,3), num_filters=64, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l1 = nn.layers.dnn.MaxPool2DDNNLayer(l1b, pool_size=(2,2), stride=(2,2)) l2a = nn.layers.dnn.Conv2DDNNLayer(l1 , filter_size=(3,3), num_filters=128, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l2b = nn.layers.dnn.Conv2DDNNLayer(l2a, filter_size=(3,3), num_filters=128, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l2 = nn.layers.dnn.MaxPool2DDNNLayer(l2b, pool_size=(2,2), stride=(2,2)) l3a = nn.layers.dnn.Conv2DDNNLayer(l2 , filter_size=(3,3), num_filters=256, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l3b = nn.layers.dnn.Conv2DDNNLayer(l3a, filter_size=(3,3), num_filters=256, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l3c = nn.layers.dnn.Conv2DDNNLayer(l3b, filter_size=(3,3), num_filters=256, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l3 = nn.layers.dnn.MaxPool2DDNNLayer(l3c, pool_size=(2,2), stride=(2,2)) l4a = nn.layers.dnn.Conv2DDNNLayer(l3 , filter_size=(3,3), num_filters=512, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l4b = nn.layers.dnn.Conv2DDNNLayer(l4a, filter_size=(3,3), num_filters=512, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l4c = nn.layers.dnn.Conv2DDNNLayer(l4b, filter_size=(3,3), num_filters=512, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l4 = nn.layers.dnn.MaxPool2DDNNLayer(l4c, pool_size=(2,2), stride=(2,2)) l5a = nn.layers.dnn.Conv2DDNNLayer(l4 , filter_size=(3,3), num_filters=512, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l5b = nn.layers.dnn.Conv2DDNNLayer(l5a, filter_size=(3,3), num_filters=512, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l5c = nn.layers.dnn.Conv2DDNNLayer(l5b, filter_size=(3,3), num_filters=512, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l5 = nn.layers.dnn.MaxPool2DDNNLayer(l5c, pool_size=(2,2), stride=(2,2)) key_scale = "area_per_pixel:sax" l_scale = nn.layers.InputLayer(data_sizes[key_scale]) # Systole Dense layers ldsys1 = nn.layers.DenseLayer(l5, num_units=512, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.rectify) ldsys1drop = nn.layers.dropout(ldsys1, p=0.5) ldsys2 = nn.layers.DenseLayer(ldsys1drop, num_units=64, W=nn.init.Orthogonal("relu"),b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.rectify) ldsys2drop = nn.layers.dropout(ldsys2, p=0.5) ldsys3 = nn.layers.DenseLayer(ldsys2drop, num_units=1, b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.identity) l_systole = layers.ScaleLayer(ldsys3, scale=l_scale) # Diastole Dense layers lddia1 = nn.layers.DenseLayer(l5, num_units=512, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.rectify) lddia1drop = nn.layers.dropout(lddia1, p=0.5) lddia2 = nn.layers.DenseLayer(lddia1drop, num_units=64, W=nn.init.Orthogonal("relu"),b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.rectify) lddia2drop = nn.layers.dropout(lddia2, p=0.5) lddia3 = nn.layers.DenseLayer(lddia2drop, num_units=1, b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.identity) l_diastole = layers.ScaleLayer(lddia3, scale=l_scale) return { "inputs":{ "sliced:data:singleslice": l0, key_scale: l_scale, }, "outputs": { "systole:value": l_systole, "diastole:value": l_diastole, "systole:sigma": deep_learning_layers.FixedConstantLayer(np.ones((batch_size, 1), dtype='float32')*20./np.sqrt(test_time_augmentations)), "diastole:sigma": deep_learning_layers.FixedConstantLayer(np.ones((batch_size, 1), dtype='float32')*30./np.sqrt(test_time_augmentations)), }, "regularizable": { ldsys1: l2_weight, ldsys2: l2_weight, ldsys3: l2_weight, lddia1: l2_weight, lddia2: l2_weight, lddia3: l2_weight, }, }
def build_model(): ################# # Regular model # ################# input_key = "sliced:data:ax:noswitch" data_size = data_sizes[input_key] l0 = InputLayer(data_size) l0r = batch_norm(reshape(l0, (-1, 1, ) + data_size[1:])) # (batch, channel, axis, time, x, y) # convolve over time l1 = batch_norm(ConvolutionOverAxisLayer(l0r, num_filters=8, filter_size=(3,), axis=(3,), channel=1, W=lasagne.init.Orthogonal(), b=lasagne.init.Constant(0.0), )) l1m = batch_norm(MaxPoolOverAxisLayer(l1, pool_size=(4,), axis=(3,))) # convolve over x and y l2a = batch_norm(ConvolutionOver2DAxisLayer(l1m, num_filters=8, filter_size=(3, 3), axis=(4,5), channel=1, W=lasagne.init.Orthogonal(), b=lasagne.init.Constant(0.0), )) l2b = batch_norm(ConvolutionOver2DAxisLayer(l2a, num_filters=8, filter_size=(3, 3), axis=(4,5), channel=1, W=lasagne.init.Orthogonal(), b=lasagne.init.Constant(0.0), )) l2m = batch_norm(MaxPoolOver2DAxisLayer(l2b, pool_size=(2, 2), axis=(4,5))) # convolve over x, y, time l3a = batch_norm(ConvolutionOver3DAxisLayer(l2m, num_filters=32, filter_size=(3, 3, 3), axis=(3,4,5), channel=1, W=lasagne.init.Orthogonal(), b=lasagne.init.Constant(0.1), )) l3b = batch_norm(ConvolutionOver2DAxisLayer(l3a, num_filters=32, filter_size=(3, 3), axis=(4,5), channel=1, W=lasagne.init.Orthogonal(), b=lasagne.init.Constant(0.1), )) l3m = batch_norm(MaxPoolOver2DAxisLayer(l3b, pool_size=(2, 2), axis=(4,5))) # convolve over time l4 = batch_norm(ConvolutionOverAxisLayer(l3m, num_filters=32, filter_size=(3,), axis=(3,), channel=1, W=lasagne.init.Orthogonal(), b=lasagne.init.Constant(0.1), )) l4m = batch_norm(MaxPoolOverAxisLayer(l4, pool_size=(2,), axis=(2,))) # maxpool over axis l5 = batch_norm(MaxPoolOverAxisLayer(l3m, pool_size=(4,), axis=(2,))) # convolve over x and y l6a = batch_norm(ConvolutionOver2DAxisLayer(l5, num_filters=128, filter_size=(3, 3), axis=(4,5), channel=1, W=lasagne.init.Orthogonal(), b=lasagne.init.Constant(0.1), )) l6b = batch_norm(ConvolutionOver2DAxisLayer(l6a, num_filters=128, filter_size=(3, 3), axis=(4,5), channel=1, W=lasagne.init.Orthogonal(), b=lasagne.init.Constant(0.1), )) l6m = batch_norm(MaxPoolOver2DAxisLayer(l6b, pool_size=(2, 2), axis=(4,5))) # convolve over time and x,y, is sparse reduction layer l7 = ConvolutionOver3DAxisLayer(l6m, num_filters=32, filter_size=(3,3,3), axis=(3,4,5), channel=1, W=lasagne.init.Orthogonal(), b=lasagne.init.Constant(0.1), ) key_scale = "area_per_pixel:sax" l_scale = InputLayer(data_sizes[key_scale]) # Systole Dense layers ldsys1 = lasagne.layers.DenseLayer(l7, num_units=512, W=lasagne.init.Orthogonal("relu"), b=lasagne.init.Constant(0.1), nonlinearity=lasagne.nonlinearities.rectify) ldsys1drop = lasagne.layers.dropout(ldsys1, p=0.5) ldsys2 = lasagne.layers.DenseLayer(ldsys1drop, num_units=128, W=lasagne.init.Orthogonal("relu"), b=lasagne.init.Constant(0.1), nonlinearity=lasagne.nonlinearities.rectify) ldsys2drop = lasagne.layers.dropout(ldsys2, p=0.5) ldsys3 = lasagne.layers.DenseLayer(ldsys2drop, num_units=1, b=lasagne.init.Constant(0.1), nonlinearity=lasagne.nonlinearities.identity) l_systole = layers.MuConstantSigmaErfLayer(layers.ScaleLayer(ldsys3, scale=l_scale), sigma=0.0) # Diastole Dense layers lddia1 = lasagne.layers.DenseLayer(l7, num_units=512, W=lasagne.init.Orthogonal("relu"), b=lasagne.init.Constant(0.1), nonlinearity=lasagne.nonlinearities.rectify) lddia1drop = lasagne.layers.dropout(lddia1, p=0.5) lddia2 = lasagne.layers.DenseLayer(lddia1drop, num_units=128, W=lasagne.init.Orthogonal("relu"), b=lasagne.init.Constant(0.1), nonlinearity=lasagne.nonlinearities.rectify) lddia2drop = lasagne.layers.dropout(lddia2, p=0.5) lddia3 = lasagne.layers.DenseLayer(lddia2drop, num_units=1, b=lasagne.init.Constant(0.1), nonlinearity=lasagne.nonlinearities.identity) l_diastole = layers.MuConstantSigmaErfLayer(layers.ScaleLayer(lddia3, scale=l_scale), sigma=0.0) return { "inputs":{ input_key: l0, key_scale: l_scale, }, "outputs": { "systole": l_systole, "diastole": l_diastole, }, "regularizable": { ldsys1: l2_weight, ldsys2: l2_weight, ldsys3: l2_weight, lddia1: l2_weight, lddia2: l2_weight, lddia3: l2_weight, }, }