Example #1
0
class ShallowConvNet(Net):

    def __init__(self, device=torch.device('cuda:0')):
        super().__init__(device)

        self.conv1 = Conv(1, 6, kernel_size=5, noise_std=1e-0, act='TanH', device=self.device)
        self.act1 = Activation('TanH')
        self.pool1 = Pool(2, device=self.device)

        self.fc1 = Linear(6*12*12, 100, noise_std=1e-0, act='TanH', device=self.device)
        self.act2 = Activation('TanH')
        self.fc2 = Linear(100, 10, noise_std=1e-0, act='TanH', device=self.device)
        self.softmax = Activation('Softmax')

        self.layers = [self.conv1, self.fc1, self.fc2]

    def forward(self, input):
        conv_out_1 = self.conv1.forward(input)
        act_out_1 = self.act1.forward(conv_out_1)
        pool_out_1 = self.pool1.forward(act_out_1)

        pool_out_1 = pool_out_1.reshape(len(pool_out_1), -1)

        fc_out_1 = self.fc1.forward(pool_out_1)
        act_out_2 = self.act2.forward(fc_out_1)
        fc_out_2 = self.fc2.forward(act_out_2)
        output = self.softmax.forward(fc_out_2)

        return output
Example #2
0
class LeNet5(Net):

    def __init__(self, device=torch.device('cuda:0')):
        super().__init__(device)

        self.conv1 = Conv(1, 6, kernel_size=5, noise_std=1e-0, act='ReLU', device=self.device)
        self.act1 = Activation('ReLU')
        self.pool1 = Pool(2, device=self.device)

        self.conv2 = Conv(6, 16, kernel_size=5, noise_std=1e-0, act='ReLU', device=self.device)
        self.act2 = Activation('ReLU')
        self.pool2 = Pool(2, device=self.device)

        self.fc1 = Linear(256, 120, noise_std=1e-0, act='ReLU', device=self.device)
        self.act3 = Activation('ReLU')
        self.fc2 = Linear(120, 84, noise_std=1e-0, act='ReLU', device=self.device)
        self.act4 = Activation('ReLU')
        self.fc3 = Linear(84, 10, noise_std=1e-0, act='ReLU', device=self.device)
        self.softmax = Activation('Softmax')

        self.layers = [self.conv1, self.conv2, self.fc1, self.fc2, self.fc3]

    def forward(self, input):
        conv_out_1 = self.conv1.forward(input)
        act_out_1 = self.act1.forward(conv_out_1)
        pool_out_1 = self.pool1.forward(act_out_1)

        conv_out_2 = self.conv2.forward(pool_out_1)
        act_out_2 = self.act2.forward(conv_out_2)
        pool_out_2 = self.pool2.forward(act_out_2)

        pool_out_2 = pool_out_2.reshape(len(pool_out_2), -1)

        fc_out_1 = self.fc1.forward(pool_out_2)
        act_out_3 = self.act3.forward(fc_out_1)
        fc_out_2 = self.fc2.forward(act_out_3)
        act_out_4 = self.act4.forward(fc_out_2)
        fc_out_3 = self.fc3.forward(act_out_4)
        output = self.softmax.forward(fc_out_3)

        return output
Example #3
0
class DenseNet_CNN(Net):

    def __init__(self, device=torch.device('cuda:0')):
        super().__init__(device)

        # self.fc1 = Linear(28*28, 25, noise_std=1e-0, device=self.device)
        self.fc1 = Conv(1, 25, kernel_size=25, noise_std=1e-0, act='TanH', device=self.device)
        self.act1 = Activation('TanH')
        self.fc2 = Linear(16*25, 10, noise_std=1e-0, device=self.device)
        self.softmax = Activation('Softmax')

        self.layers = [self.fc1, self.fc2]

    def forward(self, input):
        #input = input.reshape(len(input), -1)

        fc_out_1 = self.fc1.forward(input)
        act_out_1 = self.act1.forward(fc_out_1)

        act_out_1 = act_out_1.reshape(len(act_out_1), -1)

        fc_out_2 = self.fc2.forward(act_out_1)
        output = self.softmax.forward(fc_out_2)
        return output