Example #1
0
    def plan_to_goal(self, start, goal):
        """
        Plan a path from start to goal
        Return a path
        """
        # Implement here
        # Plan with lazy_astar
        self.time_left= self.total_planning_time 
        
        start, goal = tuple(start), tuple(goal)
        start_time = time.time()
        self.G, _ = graph_maker.add_node(self.G, start, env=self.planning_env,
                connection_radius=self.connection_radius)
        self.G, _ = graph_maker.add_node(self.G, goal, env=self.planning_env,
                connection_radius=self.connection_radius)
        print("t2 = ", rospy.get_time() - start_time)

        rospy.loginfo('planning from start to goal begin time: {}'.format(time.time()))
        start_time =rospy.get_time()
        try:
            path_nodes, dist = lazy_astar.astar_path(self.G, source=start, target=goal,
                weight=self.weight_func, heuristic=self.heuristic_func, return_dist=self.plan_with_budget)
        except NetworkXNoPath:
            return None
        print "planning time = ", rospy.get_time() - start_time
        rospy.loginfo('done time: {}'.format(rospy.get_time()))
        start_time = self.tic_toc(rospy.get_time()- start_time)
        idx = 0 
        max_sample_num = 10
        added_nodes = []
        while self.plan_with_budget and self.time_left > 0:
            added_node, ellipse, start_time = self.densify_graph(start, goal, dist, max_sample_num)
            added_nodes.extend(added_node)
            try:
                path_nodes, dist = lazy_astar.astar_path(self.G, source=start, target=goal,
                                weight=self.weight_func, heuristic=self.heuristic_func, return_dist=True)
            except NetworkXNoPath:
                # avoid replacing the old path
                IPython.embed()
                self.remove_nodes(added_nodes)
                added_nodes = []
                continue
            self.path_nodes = path_nodes
            self.visualiza_plan = True
            start_time = self.tic_toc(time.time() - start_time)
            idx += 1
            # self.planning_env.visualize_graph(self.G, start, goal, added_nodes, ellipse, self.path_nodes, 'densify_{}'.format(idx))
            print 'current min distance: {}, added node: {}'.format(dist, len(added_nodes))
        
        print 'planning time left', self.time_left
        
        rospy.loginfo('done planning.')
        self.path_nodes = path_nodes
        self.visualiza_plan = False
        print('path length before shortcut: {}'.format(dist))
        if self.do_shortcut:
            path_nodes = self.planning_env.shortcut(self.G, path_nodes)
        path = self.planning_env.get_path_on_graph(self.G, path_nodes)
        self.remove_nodes(added_nodes)
        return path
Example #2
0
 def plan_to_goal(self, start, goal):
     """
     Plan a path from start to goal
     Return a path
     """
     # TODO
     # Plan with lazy_astar
     self.G, start_id = graph_maker.add_node(
         self.G,
         start,
         env=self.planning_env,
         connection_radius=self.connection_radius,
         start_from_config=True)
     self.G, goal_id = graph_maker.add_node(
         self.G,
         goal,
         env=self.planning_env,
         connection_radius=self.connection_radius,
         start_from_config=False)
     path_nodes = lazy_astar.astar_path(self.G,
                                        source=start_id,
                                        target=goal_id,
                                        weight=self.weight_func,
                                        heuristic=self.heuristic_func)
     if self.do_shortcut:
         self.planning_env.shortcut(self.G, path_nodes)
     path = self.planning_env.get_path_on_graph(self.G, path_nodes)
     path = self.map2world(path)
     return path
Example #3
0
    def plan_to_goal(self, start, goal):
        """
        Plan a path from start to goal
        Return a path
        """
        # Implement here
        # Plan with lazy_astar
        path = lazy_astar.astar_path(G,
                                     source=start,
                                     target=goal,
                                     weight=self.weight_func,
                                     heuristic=self.heuristic_func)

        return path
Example #4
0
    def plan_to_goal(self, start, goal):
        """
        Plan a path from start to goal
        Return a path in world frame.
        """
        # TODO: Implement here
        # 1. Add start and goal nodes to the graph
        # 2. Call the lazy a* planner
        # 3. Do shortcut if necessary
        self.G, start_id = graph_maker.add_node(
            self.G,
            start,
            env=self.planning_env,
            connection_radius=self.connection_radius,
            start_from_config=True,
            lazy=True)

        self.G, goal_id = graph_maker.add_node(
            self.G,
            goal,
            env=self.planning_env,
            connection_radius=self.connection_radius,
            start_from_config=False,
            lazy=True)
        lastar_start = time.time()
        path = lazy_astar.astar_path(self.G,
                                     source=start_id,
                                     target=goal_id,
                                     weight=self.weight_func,
                                     heuristic=self.heuristic_func)
        lastar_end = time.time()
        print("Lazy planning time: ", lastar_end - lastar_start)
        #self.planning_env.visualize_plan(self.G,path)
        lastar_end = time.time()
        if (len(path) > 2):
            path = self.planning_env.shortcut(self.G, path)
        print("Shortcut time: ", time.time() - lastar_end)
        #self.planning_env.visualize_plan(self.G,path)
        # Convert the generated map path to world path.
        # configs is the list of waypoints on the path.
        configs = self.planning_env.get_path_on_graph(self.G, path)
        world_points = util.map_to_world(configs, self.map.info)
        return world_points
Example #5
0
    #planning_env.visualize_graph(G, tuple(args.start), tuple(args.goal))
>>>>>>> a7e57bfd30cce53a52a585e8e419a8029de5343d

    try:
        heuristic = planning_env.compute_heuristic
        #heuristic = lambda n1, n2: planning_env.compute_heuristic(
        #    G.nodes[n1]['config'], G.nodes[n2]['config'])
        #    n1, n2)
        end = time.time()
        if args.lazy:
            print("lazy A*")
            weight = planning_env.edge_validity_checker
            #weight = lambda n1, n2: planning_env.edge_validity_checker(n1, n2)
            #    G.nodes[n1]['config'], G.nodes[n2]['config'])
<<<<<<< HEAD
            path, dist = lazy_astar.astar_path(G,
                source=start_id, target=goal_id, weight=weight, heuristic=heuristic)
        else:
            path, dist = astar.astar_path(G,
                source=start_id, target=goal_id, heuristic=heuristic)
        print('plan time: ', time.time() - end)
        # print('path length: {}'.format(dist))
        #print("path we got", path)
        if args.shortcut:
            end = time.time()
            plan = planning_env.shortcut(G, path)
            print('short cut time: ', time.time() - end)
            print(path)
            dist = planning_env.compute_path_length(path)
            print('path length: {}'.format(dist))
=======
            path = lazy_astar.astar_path(G,
Example #6
0
    def plan_to_goal(self, start, goal):
        """
        Plan a path from start to goal
        Return a path
        """
        # Implement here
        # Plan with lazy_astar
        self.time_left = self.total_planning_time

        start, goal = tuple(start), tuple(goal)
        start_time = time.time()
        self.G, _ = graph_maker.add_node(
            self.G,
            start,
            env=self.planning_env,
            connection_radius=self.connection_radius)
        self.G, _ = graph_maker.add_node(
            self.G,
            goal,
            env=self.planning_env,
            connection_radius=self.connection_radius)
        print("t2 = ", time.time() - start_time)

        rospy.loginfo('planning from start to goal...')
        start_time = time.time()
        path_nodes, dist = lazy_astar.astar_path(
            self.G,
            source=start,
            target=goal,
            weight=self.weight_func,
            heuristic=self.heuristic_func,
            return_dist=self.plan_with_budget)
        print "planning time = ", time.time() - start_time
        start_time = self.tic_toc(time.time() - start_time)
        idx = 0
        max_sample_num = 16
        added_nodes = []
        while self.plan_with_budget and self.time_left > 0:
            added_node, ellipse, start_time = self.densify_graph(
                start, goal, dist, max_sample_num)
            added_nodes.extend(added_node)
            path_nodes, dist = lazy_astar.astar_path(
                self.G,
                source=start,
                target=goal,
                weight=self.weight_func,
                heuristic=self.heuristic_func,
                return_dist=True)
            self.path_nodes = path_nodes
            self.visualiza_plan = True
            start_time = self.tic_toc(time.time() - start_time)
            idx += 1
            self.planning_env.visualize_graph(self.G, start, goal, added_nodes,
                                              ellipse, self.path_nodes,
                                              'densify_{}'.format(idx))
            print 'current minimum distance', dist
            print 'total connect nodes', len(added_nodes)
        print 'planning time left', self.time_left

        rospy.loginfo('done planning.')
        self.path_nodes = path_nodes
        self.visualiza_plan = False
        print('path length before shortcut: {}'.format(dist))
        if self.do_shortcut:
            path_nodes = self.planning_env.shortcut(self.G, path_nodes)
        path = self.planning_env.get_path_on_graph(self.G, path_nodes)
        return path