Example #1
0
def construct_model(run_args):
    """Construct LBANN model.

    Initial model for ATOM molecular VAE

    """
    import lbann

    pad_index = run_args.pad_index
    assert pad_index is not None

    sequence_length = run_args.sequence_length
    assert sequence_length is not None

    print("sequence length is {}".format(sequence_length))
    data_layout = "data_parallel"
    # Layer graph
    input_ = lbann.Identity(lbann.Input(name='inp', target_mode="N/A"),
                            name='inp1')
    vae_loss = []
    input_feature_dims = sequence_length

    embedding_size = run_args.embedding_dim
    dictionary_size = run_args.num_embeddings
    assert embedding_size is not None
    assert dictionary_size is not None

    kl, recon = molvae.MolVAE(input_feature_dims, dictionary_size,
                              embedding_size, pad_index)(input_)

    vae_loss.append(kl)
    vae_loss.append(recon)
    print("LEN vae loss ", len(vae_loss))

    layers = list(lbann.traverse_layer_graph(input_))
    # Setup objective function
    weights = set()
    for l in layers:
        weights.update(l.weights)
    l2_reg = lbann.L2WeightRegularization(weights=weights, scale=5e-4)
    obj = lbann.ObjectiveFunction(vae_loss)

    # Initialize check metric callback
    metrics = [
        lbann.Metric(kl, name='kl_loss'),
        lbann.Metric(recon, name='recon')
    ]

    callbacks = [lbann.CallbackPrint(), lbann.CallbackTimer()]

    if (run_args.dump_weights_interval > 0):
        callbacks.append(
            lbann.CallbackDumpWeights(
                directory=run_args.dump_weights_dir,
                epoch_interval=run_args.dump_weights_interval))
    if (run_args.ltfb):
        send_name = ('' if run_args.weights_to_send == 'All' else
                     run_args.weights_to_send)  #hack for Merlin empty string
        weights_to_ex = [w.name for w in weights if send_name in w.name]
        print("LTFB Weights to exchange ", weights_to_ex)
        callbacks.append(
            lbann.CallbackLTFB(batch_interval=run_args.ltfb_batch_interval,
                               metric='recon',
                               weights=list2str(weights_to_ex),
                               low_score_wins=True,
                               exchange_hyperparameters=True))

    if (run_args.warmup):
        callbacks.append(
            lbann.CallbackLinearGrowthLearningRate(target=run_args.lr / 512 *
                                                   run_args.batch_size,
                                                   num_epochs=5))

    # Construct model
    return lbann.Model(run_args.num_epochs,
                       weights=weights,
                       layers=layers,
                       objective_function=obj,
                       metrics=metrics,
                       callbacks=callbacks)
Example #2
0
def construct_jag_wae_model(ydim, zdim, mcf, useCNN, dump_models,
                            ltfb_batch_interval, num_epochs):
    """Construct LBANN model.

    JAG Wasserstein autoencoder  model

    """

    # Layer graph
    input = lbann.Input(data_field='samples', name='inp_data')
    # data is 64*64*4 images + 15 scalar + 5 param
    #inp_slice = lbann.Slice(input, axis=0, slice_points="0 16399 16404",name='inp_slice')
    inp_slice = lbann.Slice(input,
                            axis=0,
                            slice_points=str_list([0, ydim, ydim + 5]),
                            name='inp_slice')
    gt_y = lbann.Identity(inp_slice, name='gt_y')
    gt_x = lbann.Identity(inp_slice, name='gt_x')  #param not used

    zero = lbann.Constant(value=0.0, num_neurons='1', name='zero')
    one = lbann.Constant(value=1.0, num_neurons='1', name='one')

    z_dim = 20  #Latent space dim

    z = lbann.Gaussian(mean=0.0, stdev=1.0, neuron_dims="20")
    model = macc_network_architectures.MACCWAE(zdim,
                                               ydim,
                                               cf=mcf,
                                               use_CNN=useCNN)
    d1_real, d1_fake, d_adv, pred_y = model(z, gt_y)

    d1_real_bce = lbann.SigmoidBinaryCrossEntropy([d1_real, one],
                                                  name='d1_real_bce')
    d1_fake_bce = lbann.SigmoidBinaryCrossEntropy([d1_fake, zero],
                                                  name='d1_fake_bce')
    d_adv_bce = lbann.SigmoidBinaryCrossEntropy([d_adv, one], name='d_adv_bce')
    img_loss = lbann.MeanSquaredError([pred_y, gt_y])
    rec_error = lbann.L2Norm2(
        lbann.WeightedSum([pred_y, gt_y], scaling_factors="1 -1"))

    layers = list(lbann.traverse_layer_graph(input))
    # Setup objective function
    weights = set()
    src_layers = []
    dst_layers = []
    for l in layers:
        if (l.weights and "disc0" in l.name and "instance1" in l.name):
            src_layers.append(l.name)
        #freeze weights in disc2
        if (l.weights and "disc1" in l.name):
            dst_layers.append(l.name)
            for idx in range(len(l.weights)):
                l.weights[idx].optimizer = lbann.NoOptimizer()
        weights.update(l.weights)
    l2_reg = lbann.L2WeightRegularization(weights=weights, scale=1e-4)
    d_adv_bce = lbann.LayerTerm(d_adv_bce, scale=0.01)
    obj = lbann.ObjectiveFunction(
        [d1_real_bce, d1_fake_bce, d_adv_bce, img_loss, rec_error, l2_reg])
    # Initialize check metric callback
    metrics = [lbann.Metric(img_loss, name='recon_error')]
    #pred_y = macc_models.MACCWAE.pred_y_name
    callbacks = [
        lbann.CallbackPrint(),
        lbann.CallbackTimer(),
        lbann.CallbackPrintModelDescription(),
        lbann.CallbackSaveModel(dir=dump_models),
        lbann.CallbackReplaceWeights(source_layers=list2str(src_layers),
                                     destination_layers=list2str(dst_layers),
                                     batch_interval=2)
    ]

    if (ltfb_batch_interval > 0):
        callbacks.append(
            lbann.CallbackLTFB(batch_interval=ltfb_batch_interval,
                               metric='recon_error',
                               low_score_wins=True,
                               exchange_hyperparameters=True))

    # Construct model
    return lbann.Model(num_epochs,
                       weights=weights,
                       layers=layers,
                       metrics=metrics,
                       objective_function=obj,
                       callbacks=callbacks)
Example #3
0
def construct_macc_surrogate_model(xdim, ydim, zdim, wae_mcf, surrogate_mcf,
                                   lambda_cyc, useCNN, dump_models,
                                   pretrained_dir, ltfb_batch_interval,
                                   num_epochs):
    """Construct MACC surrogate model.

    See https://arxiv.org/pdf/1912.08113.pdf model architecture and other details

    """
    # Layer graph
    input = lbann.Input(data_field='samples', name='inp_data')
    # data is 64*64*4 images + 15 scalar + 5 param
    inp_slice = lbann.Slice(input,
                            axis=0,
                            slice_points=str_list([0, ydim, ydim + xdim]),
                            name='inp_slice')
    gt_y = lbann.Identity(inp_slice, name='gt_y')
    gt_x = lbann.Identity(inp_slice, name='gt_x')  #param not used

    zero = lbann.Constant(value=0.0, num_neurons='1', name='zero')
    one = lbann.Constant(value=1.0, num_neurons='1', name='one')

    z = lbann.Gaussian(mean=0.0, stdev=1.0, neuron_dims="20")
    wae = macc_network_architectures.MACCWAE(
        zdim, ydim, cf=wae_mcf, use_CNN=useCNN)  #pretrained, freeze
    inv = macc_network_architectures.MACCInverse(xdim, cf=surrogate_mcf)
    fwd = macc_network_architectures.MACCForward(zdim, cf=surrogate_mcf)

    y_pred_fwd = wae.encoder(gt_y)

    param_pred_ = wae.encoder(gt_y)
    input_fake = inv(param_pred_)

    output_cyc = fwd(input_fake)
    y_image_re2 = wae.decoder(output_cyc)
    '''**** Train cycleGAN input params <--> latent space of (images, scalars) ****'''
    output_fake = fwd(gt_x)
    y_image_re = wae.decoder(output_fake)

    param_pred2_ = wae.encoder(y_image_re)
    input_cyc = inv(param_pred2_)

    L_l2_x = lbann.MeanSquaredError(input_fake, gt_x)
    L_cyc_x = lbann.MeanSquaredError(input_cyc, gt_x)

    L_l2_y = lbann.MeanSquaredError(output_fake, y_pred_fwd)
    L_cyc_y = lbann.MeanSquaredError(output_cyc, y_pred_fwd)

    #@todo slice here to separate scalar from image
    img_sca_loss = lbann.MeanSquaredError(y_image_re, gt_y)
    #L_cyc = L_cyc_y + L_cyc_x
    L_cyc = lbann.Add(L_cyc_y, L_cyc_x)

    #loss_gen0  = L_l2_y + lamda_cyc*L_cyc
    loss_gen0 = lbann.WeightedSum([L_l2_y, L_cyc],
                                  scaling_factors=f'1 {lambda_cyc}')
    loss_gen1 = lbann.WeightedSum([L_l2_x, L_cyc_y],
                                  scaling_factors=f'1 {lambda_cyc}')
    #loss_gen1  =  L_l2_x + lamda_cyc*L_cyc_y

    layers = list(lbann.traverse_layer_graph(input))
    weights = set()
    #Freeze appropriate (pretrained) weights
    pretrained_models = ["wae"]  #add macc?
    for l in layers:
        for idx in range(len(pretrained_models)):
            if (l.weights and pretrained_models[idx] in l.name):
                for w in range(len(l.weights)):
                    l.weights[w].optimizer = lbann.NoOptimizer()
        weights.update(l.weights)

    l2_reg = lbann.L2WeightRegularization(weights=weights, scale=1e-4)
    #d_adv_bce = lbann.LayerTerm(d_adv_bce,scale=0.01)
    # Setup objective function
    obj = lbann.ObjectiveFunction([loss_gen0, loss_gen1, l2_reg])
    # Initialize check metric callback
    metrics = [
        lbann.Metric(img_sca_loss, name='fw_loss'),
        lbann.Metric(L_l2_x, name='inverse loss'),
        lbann.Metric(L_cyc_y, name='output cycle loss'),
        lbann.Metric(L_cyc_x, name='param cycle loss')
    ]

    callbacks = [
        lbann.CallbackPrint(),
        lbann.CallbackSaveModel(dir=dump_models),
        lbann.CallbackLoadModel(dirs=str(pretrained_dir)),
        lbann.CallbackTimer()
    ]

    if (ltfb_batch_interval > 0):
        callbacks.append(
            lbann.CallbackLTFB(batch_interval=ltfb_batch_interval,
                               metric='fw_loss',
                               low_score_wins=True,
                               exchange_hyperparameters=True))
    # Construct model
    return lbann.Model(num_epochs,
                       weights=weights,
                       layers=layers,
                       metrics=metrics,
                       objective_function=obj,
                       callbacks=callbacks)
Example #4
0
def construct_model(run_args):
    """Construct LBANN model.

    Initial model for ATOM molecular VAE

    """
    import lbann

    pad_index = run_args.pad_index
    assert pad_index is not None

    sequence_length = run_args.sequence_length
    assert sequence_length is not None

    print("sequence length is {}".format(sequence_length))
    data_layout = "data_parallel"
    # Layer graph
    input_ = lbann.Identity(lbann.Input(name='inp', target_mode="N/A"),
                            name='inp1')
    vae_loss = []
    input_feature_dims = sequence_length

    embedding_size = run_args.embedding_dim
    dictionary_size = run_args.num_embeddings
    assert embedding_size is not None
    assert dictionary_size is not None

    save_output = True if run_args.dump_outputs_dir else False

    print("save output? ", save_output, "out dir ", run_args.dump_outputs_dir)
    z = lbann.Gaussian(mean=0.0, stdev=1.0, neuron_dims="128")
    recon, d1_real, d1_fake, d_adv, arg_max = molwae.MolWAE(
        input_feature_dims, dictionary_size, embedding_size, pad_index,
        save_output)(input_, z)

    zero = lbann.Constant(value=0.0, num_neurons='1', name='zero')
    one = lbann.Constant(value=1.0, num_neurons='1', name='one')

    d1_real_bce = lbann.SigmoidBinaryCrossEntropy([d1_real, one],
                                                  name='d1_real_bce')
    d1_fake_bce = lbann.SigmoidBinaryCrossEntropy([d1_fake, zero],
                                                  name='d1_fake_bce')
    d_adv_bce = lbann.SigmoidBinaryCrossEntropy([d_adv, one], name='d_adv_bce')

    vae_loss.append(recon)

    layers = list(lbann.traverse_layer_graph(input_))
    # Setup objective function
    weights = set()
    src_layers = []
    dst_layers = []
    for l in layers:
        if (l.weights and "disc0" in l.name and "instance1" in l.name):
            src_layers.append(l.name)
        #freeze weights in disc2
        if (l.weights and "disc1" in l.name):
            dst_layers.append(l.name)
            for idx in range(len(l.weights)):
                l.weights[idx].optimizer = lbann.NoOptimizer()
        weights.update(l.weights)
    l2_reg = lbann.L2WeightRegularization(weights=weights, scale=1e-4)

    vae_loss.append(d1_real_bce)
    vae_loss.append(d_adv_bce)
    vae_loss.append(d1_fake_bce)
    vae_loss.append(l2_reg)
    print("LEN vae loss ", len(vae_loss))

    obj = lbann.ObjectiveFunction(vae_loss)

    # Initialize check metric callback
    metrics = [
        lbann.Metric(d_adv_bce, name='adv_loss'),
        lbann.Metric(recon, name='recon')
    ]

    callbacks = [
        lbann.CallbackPrint(),
        #lbann.CallbackStepLearningRate(step=10, amt=0.5),
        lbann.CallbackTimer()
    ]

    if (run_args.dump_weights_interval > 0):
        callbacks.append(
            lbann.CallbackDumpWeights(
                directory=run_args.dump_weights_dir,
                epoch_interval=run_args.dump_weights_interval))
    if (run_args.ltfb):
        send_name = ('' if run_args.weights_to_send == 'All' else
                     run_args.weights_to_send)  #hack for Merlin empty string
        weights_to_ex = [w.name for w in weights if send_name in w.name]
        print("LTFB Weights to exchange ", weights_to_ex)
        callbacks.append(
            lbann.CallbackLTFB(batch_interval=run_args.ltfb_batch_interval,
                               metric='recon',
                               weights=list2str(weights_to_ex),
                               low_score_wins=True,
                               exchange_hyperparameters=True))

    callbacks.append(
        lbann.CallbackReplaceWeights(source_layers=list2str(src_layers),
                                     destination_layers=list2str(dst_layers),
                                     batch_interval=2))

    #Dump final weight for inference
    if (run_args.dump_model_dir):
        callbacks.append(lbann.CallbackSaveModel(dir=run_args.dump_model_dir))

    #Dump output (activation) for post processing
    if (run_args.dump_outputs_dir):
        pred_tensor = lbann.Concatenation(arg_max, name='pred_tensor')
        callbacks.append(
            lbann.CallbackDumpOutputs(
                batch_interval=run_args.dump_outputs_interval,
                execution_modes='test',
                directory=run_args.dump_outputs_dir,
                layers='inp pred_tensor'))

    if (run_args.warmup):
        callbacks.append(
            lbann.CallbackLinearGrowthLearningRate(target=run_args.lr / 512 *
                                                   run_args.batch_size,
                                                   num_epochs=5))

    # Construct model
    return lbann.Model(run_args.num_epochs,
                       weights=weights,
                       layers=layers,
                       objective_function=obj,
                       metrics=metrics,
                       callbacks=callbacks)