Example #1
0
def construct_model():
    """Construct LBANN model.

    Pilot1 Combo model

    """
    import lbann

    # Layer graph
    data = lbann.Input(data_field='samples')
    responses = lbann.Input(data_field='responses')

    pred = combo.Combo()(data)
    mse = lbann.MeanSquaredError([responses, pred])

    SS_res = lbann.Reduction(lbann.Square(lbann.Subtract(responses, pred)),
                             mode='sum')

    #SS_tot = var(x) = mean((x-mean(x))^2)
    mini_batch_size = lbann.MiniBatchSize()
    mean = lbann.Divide(lbann.BatchwiseReduceSum(responses), mini_batch_size)
    SS_tot = lbann.Divide(
        lbann.BatchwiseReduceSum(lbann.Square(lbann.Subtract(responses,
                                                             mean))),
        mini_batch_size)
    eps = lbann.Constant(value=1e-07, hint_layer=SS_tot)
    r2 = lbann.Subtract(lbann.Constant(value=1, num_neurons='1'),
                        lbann.Divide(SS_res, lbann.Add(SS_tot, eps)))

    metrics = [lbann.Metric(mse, name='mse')]
    metrics.append(lbann.Metric(r2, name='r2'))

    callbacks = [lbann.CallbackPrint(), lbann.CallbackTimer()]

    # Construct model
    num_epochs = 100
    layers = list(lbann.traverse_layer_graph([data, responses]))
    return lbann.Model(num_epochs,
                       layers=layers,
                       metrics=metrics,
                       objective_function=mse,
                       callbacks=callbacks)
Example #2
0
# Pearson Correlation
# rho(x,y) = covariance(x,y) / sqrt( variance(x) * variance(y) )
pearson_r_cov = lbann.Covariance([pred, responses], name="pearson_r_cov")

pearson_r_var1 = lbann.Variance(responses, name="pearson_r_var1")

pearson_r_var2 = lbann.Variance(pred, name="pearson_r_var2")

pearson_r_mult = lbann.Multiply([pearson_r_var1, pearson_r_var2],
                                name="pearson_r_mult")

pearson_r_sqrt = lbann.Sqrt(pearson_r_mult, name="pearson_r_sqrt")

eps = lbann.Constant(value=1e-07, hint_layer=pearson_r_sqrt)
pearson_r = lbann.Divide(
    [pearson_r_cov, lbann.Add(pearson_r_sqrt, eps)], name="pearson_r")

metrics = [lbann.Metric(mse, name='mse')]
metrics.append(lbann.Metric(pearson_r, name='pearson_r'))

callbacks = [lbann.CallbackPrint(), lbann.CallbackTimer()]

layers = list(lbann.traverse_layer_graph([images, responses]))
model = lbann.Model(args.num_epochs,
                    layers=layers,
                    metrics=metrics,
                    objective_function=mse,
                    callbacks=callbacks)

# Load data reader from prototext
data_reader_proto = lbann.lbann_pb2.LbannPB()
Example #3
0
    def compute_loss(self, x, y):

        # y[:, :-1]
        y = lbann.Slice(
            y,
            axis=0,
            slice_points=str_list([0, self.input_feature_dims - 1]),
        )
        y = lbann.Identity(y)

        # x[:, 1:]
        x = lbann.Slice(
            x,
            slice_points=str_list([1, self.input_feature_dims]),
        )
        x = lbann.Identity(x)

        # Convert indices in x to one-hot representation
        # Note: Ignored indices result in zero vectors
        ignore_mask = lbann.Equal(
            x,
            self.constant(self.label_to_ignore, hint_layer=x),
        )
        keep_mask = lbann.LogicalNot(ignore_mask)
        length = lbann.Reduction(keep_mask, mode='sum')
        length = lbann.Max(length, self.constant(1, [1]))
        x = lbann.Add(
            lbann.Multiply(keep_mask, x),
            lbann.Multiply(ignore_mask, self.constant(-1, hint_layer=x)),
        )
        x = lbann.Slice(x,
                        slice_points=str_list(range(self.input_feature_dims)))
        x = [lbann.Identity(x) for _ in range(self.input_feature_dims - 1)]
        x = [lbann.OneHot(xi, size=self.dictionary_size) for xi in x]
        x = [
            lbann.Reshape(xi, dims=str_list([1, self.dictionary_size]))
            for xi in x
        ]
        x = lbann.Concatenation(x, axis=0)

        # recon_loss = F.cross_entropy(
        #     y[:, :-1].contiguous().view(-1, y.size(-1)),
        #     x[:, 1:].contiguous().view(-1),
        #     ignore_index=self.pad
        # )
        # Note: Ideally we'd shift y by y.max(-1) for numerical stability
        shifts = lbann.MatMul(
            lbann.Max(y, self.constant(0, hint_layer=y)),
            self.constant(
                1 / math.sqrt(self.dictionary_size),
                [self.dictionary_size, self.dictionary_size],
            ),
        )
        y = lbann.Subtract(y, shifts)
        z = lbann.MatMul(
            lbann.Exp(y),
            self.constant(1, [self.dictionary_size, 1]),
        )
        z = lbann.Log(z)
        z = lbann.MatMul(
            lbann.Reshape(keep_mask, dims=str_list([1, -1])),
            z,
        )
        recon_loss = lbann.MatMul(
            lbann.Reshape(y, dims=str_list([1, -1])),
            lbann.Reshape(x, dims=str_list([1, -1])),
            transpose_b=True,
        )
        recon_loss = lbann.Subtract(z, recon_loss)
        recon_loss = lbann.Reshape(recon_loss, dims=str_list([1]))
        recon_loss = lbann.Divide(recon_loss, length)

        return recon_loss
                                data_layout="model_parallel")

pearson_r_var2 = lbann.Variance(reconstruction,
                                name="pearson_r_var1",
                                data_layout="model_parallel")

pearson_r_mult = lbann.Multiply([pearson_r_var1, pearson_r_var2],
                                name="pearson_r_mult",
                                data_layout="model_parallel")

pearson_r_sqrt = lbann.Sqrt(pearson_r_mult,
                            name="pearson_r_sqrt",
                            data_layout="model_parallel")

pearson_r = lbann.Divide([pearson_r_cov, pearson_r_sqrt],
                         name="pearson_r",
                         data_layout="model_parallel")

layer_list = list(lbann.traverse_layer_graph(input_))

# Set up objective function
layer_term = lbann.LayerTerm(mean_squared_error)
obj = lbann.ObjectiveFunction(layer_term)

# Metrics
metrics = [lbann.Metric(pearson_r, name="Pearson correlation")]

# Callbacks
callbacks = [lbann.CallbackPrint(), lbann.CallbackTimer()]

# Setup Model
Example #5
0
def make_model(
    num_epochs,
    embed_dim,
    num_heads,
    label_smoothing,
):

    # Embedding weights
    var = 2 / (embed_dim + vocab_size)  # Glorot initialization
    embedding_weights = lbann.Weights(
        name='embeddings',
        initializer=lbann.NormalInitializer(standard_deviation=math.sqrt(var)),
    )

    # Input is two sequences of token IDs
    input_ = lbann.Input(data_field='samples')

    # Get sequences of embedding vectors
    # Note: Scale embeddings by sqrt(embed_dim).
    # Note: Decoder input is shifted right, so embedding for last
    # token isn't needed.
    embeddings_tokens = lbann.Identity(
        lbann.Slice(
            input_,
            axis=0,
            slice_points=str_list([0, 2 * sequence_length - 1]),
        ))
    embeddings = lbann.Embedding(
        embeddings_tokens,
        weights=embedding_weights,
        num_embeddings=vocab_size,
        embedding_dim=embed_dim,
        padding_idx=pad_index,
    )
    embeddings = lbann.WeightedSum(
        embeddings,
        scaling_factors=str(math.sqrt(embed_dim)),
    )
    embeddings_slice = lbann.Slice(
        embeddings,
        axis=0,
        slice_points=str_list([0, sequence_length, 2 * sequence_length - 1]),
    )
    encoder_input = lbann.Identity(embeddings_slice)
    decoder_input = lbann.Identity(embeddings_slice)

    # Apply transformer model
    transformer = lbann.models.Transformer(
        hidden_size=embed_dim,
        num_heads=num_heads,
        name='transformer',
    )
    result = transformer(
        encoder_input,
        sequence_length,
        decoder_input,
        sequence_length - 1,
    )

    # Reconstruct decoder input
    preds = lbann.ChannelwiseFullyConnected(
        result,
        weights=embedding_weights,
        output_channel_dims=[vocab_size],
        bias=False,
        transpose=True,
    )
    preds = lbann.ChannelwiseSoftmax(preds)
    preds = lbann.Slice(preds,
                        axis=0,
                        slice_points=str_list(range(sequence_length)))
    preds = [lbann.Identity(preds) for _ in range(sequence_length - 1)]

    # Count number of non-pad tokens
    label_tokens = lbann.Identity(
        lbann.Slice(
            input_,
            slice_points=str_list([sequence_length + 1, 2 * sequence_length]),
        ))
    pads = lbann.Constant(value=pad_index,
                          num_neurons=str(sequence_length - 1))
    is_not_pad = lbann.NotEqual(label_tokens, pads)
    num_not_pad = lbann.Reduction(is_not_pad, mode='sum')

    # Cross entropy loss with label smoothing
    label_tokens = lbann.Slice(
        label_tokens,
        slice_points=str_list(range(sequence_length)),
    )
    label_tokens = [
        lbann.Identity(label_tokens) for _ in range(sequence_length - 1)
    ]
    if label_smoothing > 0:
        uniform_label = lbann.Constant(value=1 / vocab_size,
                                       num_neurons=str_list([1, vocab_size]))
    loss = []
    for i in range(sequence_length - 1):
        label = lbann.OneHot(label_tokens[i], size=vocab_size)
        label = lbann.Reshape(label, dims=str_list([1, vocab_size]))
        if label_smoothing > 0:
            label = lbann.WeightedSum(
                label,
                uniform_label,
                scaling_factors=str_list(
                    [1 - label_smoothing, label_smoothing]),
            )
        loss.append(lbann.CrossEntropy(preds[i], label))
    loss = lbann.Concatenation(loss)

    # Average cross entropy over non-pad tokens
    loss_scales = lbann.Divide(
        is_not_pad,
        lbann.Tessellate(num_not_pad, hint_layer=is_not_pad),
    )
    loss = lbann.Multiply(loss, loss_scales)
    loss = lbann.Reduction(loss, mode='sum')

    # Construct model
    metrics = []
    callbacks = [lbann.CallbackPrint(), lbann.CallbackTimer()]
    return lbann.Model(
        num_epochs,
        layers=lbann.traverse_layer_graph(input_),
        objective_function=loss,
        metrics=metrics,
        callbacks=callbacks,
    )
Example #6
0
    def compute_loss(self, x, y):

        # y[:, :-1]
        y = lbann.Slice(
            y,
            axis=0,
            slice_points=str_list([0, self.input_feature_dims-1]),
        )
        y = lbann.Identity(y)

        # x[:, 1:]
        x = lbann.Slice(
            x,
            slice_points=str_list([1, self.input_feature_dims]),
        )
        x = lbann.Identity(x)

        # Figure out entries in x to ignore
        ignore_mask = lbann.Equal(
            x,
            self.constant(self.label_to_ignore, hint_layer=x),
        )
        keep_mask = lbann.LogicalNot(ignore_mask)
        length = lbann.Reduction(keep_mask, mode='sum')
        length = lbann.Max(length, self.constant(1, [1]))

        # Convert entries in x to indices in y
        # Note: Ignored entries correspond to an index of -1.
        offsets = [
            row*self.dictionary_size
            for row in range(self.input_feature_dims-1)
        ]
        offsets = lbann.Weights(
            initializer=lbann.ValueInitializer(values=str_list(offsets)),
            optimizer=lbann.NoOptimizer(),
        )
        offsets = lbann.WeightsLayer(
            dims=str_list([self.input_feature_dims-1]),
            weights=offsets,
        )
        y_inds = lbann.Add(x, offsets)
        y_inds = lbann.Add(
            lbann.Multiply(keep_mask, y_inds),
            lbann.Multiply(
                ignore_mask,
                self.constant(-1, hint_layer=y_inds),
            ),
        )

        # recon_loss = F.cross_entropy(
        #     y[:, :-1].contiguous().view(-1, y.size(-1)),
        #     x[:, 1:].contiguous().view(-1),
        #     ignore_index=self.pad
        # )

        # Shift y for numerical stability
        # Note: We'd prefer to shift by y.max(-1)
        shifts = lbann.MatMul(
            lbann.Max(y, self.constant(0, hint_layer=y)),
            self.constant(
                1 / math.sqrt(self.dictionary_size),
                [self.dictionary_size, self.dictionary_size],
            ),
        )
        y = lbann.Subtract(y, shifts)

        # Compute log of softmax denominator and sum
        z = lbann.MatMul(
            lbann.Exp(y),
            self.constant(1, [self.dictionary_size, 1]),
        )
        z = lbann.Log(z)
        z = lbann.MatMul(
            lbann.Reshape(keep_mask, dims=str_list([1, -1])),
            z,
        )
        z = lbann.Reshape(z, dims=str_list([1]))

        # Compute cross entropy
        recon_loss = lbann.Gather(
            lbann.Reshape(y, dims=str_list([-1])),
            y_inds,
        )
        recon_loss = lbann.Reduction(recon_loss, mode='sum')
        recon_loss = lbann.Subtract(z, recon_loss)
        recon_loss = lbann.Divide(recon_loss, length)

        return recon_loss