def plot_spherical_initial_point(case_index, ax, norm=True, p_color=seaborn.xkcd_rgb['red'], e_color=seaborn.xkcd_rgb['green'], p_label='Initial Position P', e_label='Initial Position E', side='both'): # 初始状态 state_p0 = solve_spherical_model.CASES[case_index - 1][0] state_e0 = solve_spherical_model.CASES[case_index - 1][1] if norm: state_p0 = ldope.spherical_state_norm_fcn(state_p0) state_e0 = ldope.spherical_state_norm_fcn(state_e0) # 初始点 r_p, r_e = state_p0[0], state_e0[0] xi_p, xi_e = state_p0[3], state_e0[3] phi_p, phi_e = state_p0[4], state_e0[4] xp = (r_p * cos(phi_p) * cos(xi_p)) yp = (r_p * cos(phi_p) * sin(xi_p)) zp = (r_p * sin(phi_p)) xe = (r_e * cos(phi_e) * cos(xi_e)) ye = (r_e * cos(phi_e) * sin(xi_e)) ze = (r_e * sin(phi_e)) # 绘制 if side == 'both' or side == 'p': ax.scatter(xp, yp, zp, color=p_color, marker='*', s=50, label=p_label) if side == 'both' or side == 'e': ax.scatter(xe, ye, ze, color=e_color, marker='s', s=25, label=e_label)
def plot_spherical_trajectory(case_index, individual, ax, norm=True, p_color=seaborn.xkcd_rgb['red'], e_color=seaborn.xkcd_rgb['green'], p_linestyle='-', e_linestyle='--', p_label='Trajectory P in SM', e_label='Trajectory E in SM', side='both'): # 初始状态量 state_p0 = solve_spherical_model.CASES[case_index - 1][0] state_e0 = solve_spherical_model.CASES[case_index - 1][1] if norm: state_p0 = ldope.spherical_state_norm_fcn(state_p0) state_e0 = ldope.spherical_state_norm_fcn(state_e0) # 初始协态量 costate_p0, costate_e0, tf_norm = ldope.spherical_individual_convert_fcn( individual) # 积分时段 if (norm): step = 0.05 t_span = 0, tf_norm t_eval = np.arange(0, tf_norm, step) t_eval = np.append(t_eval, tf_norm) else: step = 0.05 * ldope.TU t_span = 0, tf_norm * ldope.TU t_eval = np.arange(0, tf_norm * ldope.TU, step) t_eval = np.append(t_eval, tf_norm * ldope.TU) # 积分 result = solve_ivp( lambda t, y: ldope.spherical_ext_state_fcn(tuple(y.tolist()), norm), t_span=np.array(t_span), y0=np.array(state_p0 + state_e0 + costate_p0 + costate_e0), t_eval=t_eval) # 绘制向量计算 xp, yp, zp = [], [], [] xe, ye, ze = [], [], [] for each_state in result.y.T: r_p, r_e = each_state[0], each_state[6] xi_p, xi_e = each_state[3], each_state[9] phi_p, phi_e = each_state[4], each_state[10] xp.append(r_p * cos(phi_p) * cos(xi_p)) yp.append(r_p * cos(phi_p) * sin(xi_p)) zp.append(r_p * sin(phi_p)) xe.append(r_e * cos(phi_e) * cos(xi_e)) ye.append(r_e * cos(phi_e) * sin(xi_e)) ze.append(r_e * sin(phi_e)) # 绘制 if side == 'both' or side == 'p': ax.plot(xp, yp, zp, color=p_color, linestyle=p_linestyle, label=p_label) if side == 'both' or side == 'e': ax.plot(xe, ye, ze, color=e_color, linestyle=e_linestyle, label=e_label)
def plot_same_control(case_index, individual, control_case_index, control_individual, ax, p_o_color=seaborn.xkcd_rgb['red'], p_o_linestyle='-', p_o_label='P origin', e_o_color=seaborn.xkcd_rgb['green'], e_o_linestyle='--', e_o_label='E origin', p_color=seaborn.xkcd_rgb['purple'], p_linestyle='-.', p_label='P', e_color=seaborn.xkcd_rgb['blue'], e_linestyle=':', e_label='E'): # 控制初始状态量 state_control_p0 = solve_spherical_model.CASES[control_case_index - 1][0] state_control_e0 = solve_spherical_model.CASES[control_case_index - 1][1] state_control_p0 = ldope.spherical_state_norm_fcn(state_control_p0) state_control_e0 = ldope.spherical_state_norm_fcn(state_control_e0) # 控制初始协态量 costate_control_p0, costate_control_e0, tf_control_norm = \ ldope.spherical_individual_convert_fcn(control_individual) # 控制积分时段 step_control = 0.05 t_span_control = 0, tf_control_norm t_eval_control = np.arange(0, tf_control_norm, step_control) t_eval_control = np.append(t_eval_control, tf_control_norm) # 积分 result_control = solve_ivp( lambda t, y: ldope.spherical_ext_state_fcn(tuple(y.tolist()), True), t_span=np.array(t_span_control), y0=np.array(state_control_p0 + state_control_e0 + costate_control_p0 + costate_control_e0), t_eval=t_eval_control) # 控制向量计算 t_line = [] alpha_p, alpha_e = [], [] beta_p, beta_e = [], [] for i, t in enumerate(result_control.t): t_line.append(t) each_state = result_control.y.T[i] control_p = ldope.spherical_control_fcn(each_state[0:6], each_state[12:18], 'p') alpha_p.append(control_p[0] if control_p[0] > -2 else control_p[0] + 2 * pi) beta_p.append(control_p[1] if control_p[1] > 1 else control_p[1] + 2 * pi) control_e = ldope.spherical_control_fcn(each_state[6:12], each_state[18:24], 'e') alpha_e.append(control_e[0]) beta_e.append(control_e[1]) alpha_p_fcn = interp1d(t_line, alpha_p, kind='cubic') beta_p_fcn = interp1d(t_line, beta_p, kind='cubic') alpha_e_fcn = interp1d(t_line, alpha_e, kind='cubic') beta_e_fcn = interp1d(t_line, beta_e, kind='cubic') def state_p_fcn(t, y: np.ndarray): return ldope.spherical_state_fcn(tuple(y.tolist()), (alpha_p_fcn(t), beta_p_fcn(t)), side='p', norm=True) def state_e_fcn(t, y: np.ndarray): return ldope.spherical_state_fcn(tuple(y.tolist()), (alpha_e_fcn(t), beta_e_fcn(t)), side='e', norm=True) # 初始状态量 state_p0 = solve_spherical_model.CASES[case_index - 1][0] state_e0 = solve_spherical_model.CASES[case_index - 1][1] state_p0 = ldope.spherical_state_norm_fcn(state_p0) state_e0 = ldope.spherical_state_norm_fcn(state_e0) # 初始协态量 costate_p0, costate_e0, tf_norm = ldope.spherical_individual_convert_fcn( individual) # 积分时段 step = 0.05 t_span = 0, tf_norm t_eval = np.arange(0, tf_norm, step) t_eval = np.append(t_eval, tf_norm) print(tf_control_norm) print(tf_norm) # 积分 result_o = solve_ivp( lambda t, y: ldope.spherical_ext_state_fcn(tuple(y.tolist()), True), t_span=np.array(t_span), y0=np.array(state_p0 + state_e0 + costate_p0 + costate_e0), t_eval=t_eval) result_p = solve_ivp(state_p_fcn, t_span=np.array(t_span), y0=np.array(state_p0), t_eval=t_eval) result_e = solve_ivp(state_e_fcn, t_span=np.array(t_span), y0=np.array(state_e0), t_eval=t_eval) # 绘制向量计算 xp_o, yp_o, zp_o = [], [], [] xe_o, ye_o, ze_o = [], [], [] for each_state in result_o.y.T: r_p, r_e = each_state[0], each_state[6] xi_p, xi_e = each_state[3], each_state[9] phi_p, phi_e = each_state[4], each_state[10] xp_o.append(r_p * cos(phi_p) * cos(xi_p)) yp_o.append(r_p * cos(phi_p) * sin(xi_p)) zp_o.append(r_p * sin(phi_p)) xe_o.append(r_e * cos(phi_e) * cos(xi_e)) ye_o.append(r_e * cos(phi_e) * sin(xi_e)) ze_o.append(r_e * sin(phi_e)) xp, yp, zp = [], [], [] for each_state in result_p.y.T: r_p = each_state[0] xi_p = each_state[3] phi_p = each_state[4] xp.append(r_p * cos(phi_p) * cos(xi_p)) yp.append(r_p * cos(phi_p) * sin(xi_p)) zp.append(r_p * sin(phi_p)) xe, ye, ze = [], [], [] for each_state in result_e.y.T: r_e = each_state[0] xi_e = each_state[3] phi_e = each_state[4] xe.append(r_e * cos(phi_e) * cos(xi_e)) ye.append(r_e * cos(phi_e) * sin(xi_e)) ze.append(r_e * sin(phi_e)) # 绘制 ax.plot(xp_o, yp_o, zp_o, color=p_o_color, linestyle=p_o_linestyle, label=p_o_label) ax.plot(xe_o, ye_o, ze_o, color=e_o_color, linestyle=e_o_linestyle, label=e_o_label) ax.plot(xp, yp, zp, color=p_color, linestyle=p_linestyle, label=p_label) ax.plot(xe_o, ye_o, ze_o, color=e_color, linestyle=e_linestyle, label=e_label)
def plot_spherical_txi(case_index, individual, ax_p, ax_e, p_color=seaborn.xkcd_rgb['red'], p_linestyle='-', p_label=r'Pursuer t vs. $\xi$', e_color=seaborn.xkcd_rgb['green'], e_linestyle='--', e_label=r'Evader t vs. $\xi$', p_base_xi=0, e_base_xi=0): # 初始状态量 state_p0 = solve_spherical_model.CASES[case_index - 1][0] state_e0 = solve_spherical_model.CASES[case_index - 1][1] state_p0 = ldope.spherical_state_norm_fcn(state_p0) state_e0 = ldope.spherical_state_norm_fcn(state_e0) # 初始协态量 costate_p0, costate_e0, tf_norm = ldope.spherical_individual_convert_fcn( individual) # 积分时段 step = 0.05 t_span = 0, tf_norm t_eval = np.arange(0, tf_norm, step) t_eval = np.append(t_eval, tf_norm) # 积分 result = solve_ivp( lambda t, y: ldope.spherical_ext_state_fcn(tuple(y.tolist()), True), t_span=np.array(t_span), y0=np.array(state_p0 + state_e0 + costate_p0 + costate_e0), t_eval=t_eval) # 绘制向量计算 t_line = [] xi_p_line = [] xi_e_line = [] for i, t in enumerate(result.t): t_line.append(t) each_state = result.y.T[i] r_p, r_e = each_state[0], each_state[6] xi_p, xi_e = each_state[3], each_state[9] phi_p, phi_e = each_state[4], each_state[10] xp = r_p * cos(phi_p) * cos(xi_p) yp = r_p * cos(phi_p) * sin(xi_p) zp = r_p * sin(phi_p) xe = r_e * cos(phi_e) * cos(xi_e) ye = r_e * cos(phi_e) * sin(xi_e) ze = r_e * sin(phi_e) xi_p_line.append(xi_p) xi_e_line.append(xi_e) # 绘制 ax_p.semilogx(t_line, np.array(xi_p_line[:]) - p_base_xi, basex=2, color=p_color, linestyle=p_linestyle, label=p_label) ax_e.semilogx(t_line, np.array(xi_p_line[:]) - e_base_xi, basex=2, color=e_color, linestyle=e_linestyle, label=e_label)
def plot_spherical_td(case_index, individual, ax, norm=True, color=seaborn.xkcd_rgb['red'], linestyle='-', label='t vs. D'): # 初始状态量 state_p0 = solve_spherical_model.CASES[case_index - 1][0] state_e0 = solve_spherical_model.CASES[case_index - 1][1] if norm: state_p0 = ldope.spherical_state_norm_fcn(state_p0) state_e0 = ldope.spherical_state_norm_fcn(state_e0) # 初始协态量 costate_p0, costate_e0, tf_norm = ldope.spherical_individual_convert_fcn( individual) # 积分时段 if norm: step = 0.05 t_span = 0, tf_norm t_eval = np.arange(0, tf_norm, step) t_eval = np.append(t_eval, tf_norm) else: step = 0.05 * ldope.TU t_span = 0, tf_norm * ldope.TU t_eval = np.arange(0, tf_norm * ldope.TU, step) t_eval = np.append(t_eval, tf_norm * ldope.TU) # 积分 result = solve_ivp( lambda t, y: ldope.spherical_ext_state_fcn(tuple(y.tolist()), norm), t_span=np.array(t_span), y0=np.array(state_p0 + state_e0 + costate_p0 + costate_e0), t_eval=t_eval) # 绘制向量计算 r = [] t_line = [] for i, t in enumerate(result.t): if norm: t_line.append(t) else: t_line.append(t / ldope.TU) each_state = result.y.T[i] r_p, r_e = each_state[0], each_state[6] xi_p, xi_e = each_state[3], each_state[9] phi_p, phi_e = each_state[4], each_state[10] xp = r_p * cos(phi_p) * cos(xi_p) yp = r_p * cos(phi_p) * sin(xi_p) zp = r_p * sin(phi_p) xe = r_e * cos(phi_e) * cos(xi_e) ye = r_e * cos(phi_e) * sin(xi_e) ze = r_e * sin(phi_e) r.append(sqrt((xp - xe)**2 + (yp - ye)**2 + (zp - ze)**2)) # 绘制 ax.plot(t_line, r, color=color, linestyle=linestyle, label=label) ax.scatter(t_line[-1], r[-1], color=color, marker='*')
def plot_spherical_control(case_index, individual, ax_control_alpha_p, ax_control_alpha_e, ax_control_beta_p, ax_control_beta_e, p_color=seaborn.xkcd_rgb['red'], e_color=seaborn.xkcd_rgb['green'], p_linestyle='-', e_linestyle='--'): # 初始状态量 state_p0 = solve_spherical_model.CASES[case_index - 1][0] state_e0 = solve_spherical_model.CASES[case_index - 1][1] state_p0 = ldope.spherical_state_norm_fcn(state_p0) state_e0 = ldope.spherical_state_norm_fcn(state_e0) # 初始协态量 costate_p0, costate_e0, tf_norm = ldope.spherical_individual_convert_fcn( individual) # 积分时段 step = 0.05 t_span = 0, tf_norm t_eval = np.arange(0, tf_norm, step) t_eval = np.append(t_eval, tf_norm) # 积分 result = solve_ivp( lambda t, y: ldope.spherical_ext_state_fcn(tuple(y.tolist()), True), t_span=np.array(t_span), y0=np.array(state_p0 + state_e0 + costate_p0 + costate_e0), t_eval=t_eval) # 绘制向量计算 t_line = [] alpha_p, alpha_e = [], [] beta_p, beta_e = [], [] for i, t in enumerate(result.t): each_state = result.y.T[i] t_line.append(t) control_p = ldope.spherical_control_fcn(each_state[0:6], each_state[12:18], 'p') alpha_p.append(control_p[0]) beta_p.append(control_p[1]) control_e = ldope.spherical_control_fcn(each_state[6:12], each_state[18:24], 'e') alpha_e.append(control_e[0]) beta_e.append(control_e[1]) # 绘制 ax_control_alpha_p.plot(t_line, alpha_p, color=p_color, linestyle=p_linestyle, label=r'$\hat{\alpha}_P$') ax_control_alpha_p.set_ylabel(ax_control_alpha_p.get_ylabel() + ' ' + r'$\hat{\alpha}_P$') ax_control_alpha_e.plot(t_line, alpha_e, color=e_color, linestyle=e_linestyle, label=r'$\hat{\alpha}_E$') ax_control_alpha_e.set_ylabel(ax_control_alpha_e.get_ylabel() + ' ' + r'$\hat{\alpha}_E$') ax_control_beta_p.plot(t_line, beta_p, color=p_color, linestyle=p_linestyle, label=r'$\hat{\beta}_P$') ax_control_beta_p.set_ylabel(ax_control_beta_p.get_ylabel() + ' ' + r'$\hat{\beta}_P$') ax_control_beta_e.plot(t_line, beta_e, color=e_color, linestyle=e_linestyle, label=r'$\hat{\beta}_E$') ax_control_beta_e.set_ylabel(ax_control_beta_e.get_ylabel() + ' ' + r'$\hat{\beta}_E$')