def test_gru_mixture_fprop(): hidden_sizes = 50 with Timer("Creating dataset", newline=True): volume_manager = neurotools.VolumeManager() trainset = make_dummy_dataset(volume_manager) print("Dataset sizes:", len(trainset)) batch_scheduler = batch_schedulers.TractographyBatchScheduler( trainset, batch_size=16, noisy_streamlines_sigma=None, seed=1234) print("An epoch will be composed of {} updates.".format( batch_scheduler.nb_updates_per_epoch)) print(volume_manager.data_dimension, hidden_sizes, batch_scheduler.target_size) with Timer("Creating model"): hyperparams = { 'model': 'gru_mixture', 'n_gaussians': 2, 'SGD': "1e-2", 'hidden_sizes': hidden_sizes, 'learn_to_stop': False, 'normalize': False, 'feed_previous_direction': False } model = factories.model_factory( hyperparams, input_size=volume_manager.data_dimension, output_size=batch_scheduler.target_size, volume_manager=volume_manager) model.initialize( factories.weigths_initializer_factory("orthogonal", seed=1234)) # Test fprop with missing streamlines from one subject in a batch output = model.get_output(trainset.symb_inputs) fct = theano.function([trainset.symb_inputs], output, updates=model.graph_updates) batch_inputs, batch_targets, batch_mask = batch_scheduler._next_batch(2) out = fct(batch_inputs) with Timer("Building optimizer"): loss = factories.loss_factory(hyperparams, model, trainset) optimizer = factories.optimizer_factory(hyperparams, loss) fct_loss = theano.function( [trainset.symb_inputs, trainset.symb_targets, trainset.symb_mask], loss.loss, updates=model.graph_updates) loss_value = fct_loss(batch_inputs, batch_targets, batch_mask) print("Loss:", loss_value) fct_optim = theano.function( [trainset.symb_inputs, trainset.symb_targets, trainset.symb_mask], list(optimizer.directions.values()), updates=model.graph_updates) dirs = fct_optim(batch_inputs, batch_targets, batch_mask)
def test_gru_regression_fprop(): hidden_sizes = 50 with Timer("Creating dataset", newline=True): volume_manager = neurotools.VolumeManager() trainset = make_dummy_dataset(volume_manager) print("Dataset sizes:", len(trainset)) batch_scheduler = batch_schedulers.TractographyBatchScheduler(trainset, batch_size=16, noisy_streamlines_sigma=None, seed=1234) print ("An epoch will be composed of {} updates.".format(batch_scheduler.nb_updates_per_epoch)) print (volume_manager.data_dimension, hidden_sizes, batch_scheduler.target_size) with Timer("Creating model"): hyperparams = {'model': 'gru_regression', 'SGD': "1e-2", 'hidden_sizes': hidden_sizes, 'learn_to_stop': False, 'normalize': False} model = factories.model_factory(hyperparams, input_size=volume_manager.data_dimension, output_size=batch_scheduler.target_size, volume_manager=volume_manager) model.initialize(factories.weigths_initializer_factory("orthogonal", seed=1234)) # Test fprop with missing streamlines from one subject in a batch output = model.get_output(trainset.symb_inputs) fct = theano.function([trainset.symb_inputs], output, updates=model.graph_updates) batch_inputs, batch_targets, batch_mask = batch_scheduler._next_batch(2) out = fct(batch_inputs) with Timer("Building optimizer"): loss = factories.loss_factory(hyperparams, model, trainset) optimizer = factories.optimizer_factory(hyperparams, loss) fct_loss = theano.function([trainset.symb_inputs, trainset.symb_targets, trainset.symb_mask], loss.loss, updates=model.graph_updates) loss_value = fct_loss(batch_inputs, batch_targets, batch_mask) print("Loss:", loss_value) fct_optim = theano.function([trainset.symb_inputs, trainset.symb_targets, trainset.symb_mask], list(optimizer.directions.values()), updates=model.graph_updates) dirs = fct_optim(batch_inputs, batch_targets, batch_mask)
def test_gru_multistep_fprop_k3(): hidden_sizes = 50 hyperparams = { 'model': 'gru_multistep', 'k': 3, 'm': 3, 'batch_size': 16, 'SGD': "1e-2", 'hidden_sizes': hidden_sizes, 'learn_to_stop': False, 'normalize': False, 'noisy_streamlines_sigma': None, 'shuffle_streamlines': True, 'seed': 1234 } with Timer("Creating dataset", newline=True): volume_manager = neurotools.VolumeManager() trainset = make_dummy_dataset(volume_manager) print("Dataset sizes:", len(trainset)) batch_scheduler = factories.batch_scheduler_factory(hyperparams, trainset, train_mode=True) print("An epoch will be composed of {} updates.".format( batch_scheduler.nb_updates_per_epoch)) print(volume_manager.data_dimension, hidden_sizes, batch_scheduler.target_size) with Timer("Creating model"): model = factories.model_factory( hyperparams, input_size=volume_manager.data_dimension, output_size=batch_scheduler.target_size, volume_manager=volume_manager) model.initialize( factories.weigths_initializer_factory("orthogonal", seed=1234)) # Test fprop output = model.get_output(trainset.symb_inputs) fct = theano.function([trainset.symb_inputs], output, updates=model.graph_updates) batch_inputs, batch_targets, batch_mask = batch_scheduler._next_batch(2) out = fct(batch_inputs) with Timer("Building optimizer"): loss = factories.loss_factory(hyperparams, model, trainset) optimizer = factories.optimizer_factory(hyperparams, loss) fct_loss = theano.function( [trainset.symb_inputs, trainset.symb_targets, trainset.symb_mask], loss.loss, updates=model.graph_updates) loss_value = fct_loss(batch_inputs, batch_targets, batch_mask) print("Loss:", loss_value) fct_optim = theano.function( [trainset.symb_inputs, trainset.symb_targets, trainset.symb_mask], list(optimizer.directions.values()), updates=model.graph_updates) dirs = fct_optim(batch_inputs, batch_targets, batch_mask)
def main(): parser = build_argparser() args = parser.parse_args() print(args) print("Using Theano v.{}".format(theano.version.short_version)) hyperparams_to_exclude = ['max_epoch', 'force', 'name', 'view', 'shuffle_streamlines'] # Use this for hyperparams added in a new version, but nonexistent from older versions retrocompatibility_defaults = {'feed_previous_direction': False, 'normalize': False} experiment_path, hyperparams, resuming = utils.maybe_create_experiment_folder(args, exclude=hyperparams_to_exclude, retrocompatibility_defaults=retrocompatibility_defaults) # Log the command currently running. with open(pjoin(experiment_path, 'cmd.txt'), 'a') as f: f.write(" ".join(sys.argv) + "\n") print("Resuming:" if resuming else "Creating:", experiment_path) with Timer("Loading dataset", newline=True): trainset_volume_manager = VolumeManager() validset_volume_manager = VolumeManager() trainset = datasets.load_tractography_dataset(args.train_subjects, trainset_volume_manager, name="trainset", use_sh_coeffs=args.use_sh_coeffs) validset = datasets.load_tractography_dataset(args.valid_subjects, validset_volume_manager, name="validset", use_sh_coeffs=args.use_sh_coeffs) print("Dataset sizes:", len(trainset), " |", len(validset)) if args.view: tsne_view(trainset, trainset_volume_manager) sys.exit(0) batch_scheduler = batch_scheduler_factory(hyperparams, dataset=trainset, train_mode=True) print("An epoch will be composed of {} updates.".format(batch_scheduler.nb_updates_per_epoch)) print(trainset_volume_manager.data_dimension, args.hidden_sizes, batch_scheduler.target_size) with Timer("Creating model"): input_size = trainset_volume_manager.data_dimension if hyperparams['feed_previous_direction']: input_size += 3 model = model_factory(hyperparams, input_size=input_size, output_size=batch_scheduler.target_size, volume_manager=trainset_volume_manager) model.initialize(weigths_initializer_factory(args.weights_initialization, seed=args.initialization_seed)) with Timer("Building optimizer"): loss = loss_factory(hyperparams, model, trainset) if args.clip_gradient is not None: loss.append_gradient_modifier(DirectionClipping(threshold=args.clip_gradient)) optimizer = optimizer_factory(hyperparams, loss) with Timer("Building trainer"): trainer = Trainer(optimizer, batch_scheduler) # Log training error loss_monitor = views.MonitorVariable(loss.loss) avg_loss = tasks.AveragePerEpoch(loss_monitor) trainer.append_task(avg_loss) # Print average training loss. trainer.append_task(tasks.Print("Avg. training loss: : {}", avg_loss)) # if args.learn_to_stop: # l2err_monitor = views.MonitorVariable(T.mean(loss.mean_sqr_error)) # avg_l2err = tasks.AveragePerEpoch(l2err_monitor) # trainer.append_task(avg_l2err) # # crossentropy_monitor = views.MonitorVariable(T.mean(loss.cross_entropy)) # avg_crossentropy = tasks.AveragePerEpoch(crossentropy_monitor) # trainer.append_task(avg_crossentropy) # # trainer.append_task(tasks.Print("Avg. training L2 err: : {}", avg_l2err)) # trainer.append_task(tasks.Print("Avg. training stopping: : {}", avg_crossentropy)) # trainer.append_task(tasks.Print("L2 err : {0:.4f}", l2err_monitor, each_k_update=100)) # trainer.append_task(tasks.Print("stopping : {0:.4f}", crossentropy_monitor, each_k_update=100)) # Print NLL mean/stderror. # train_loss = L2DistanceForSequences(model, trainset) # train_batch_scheduler = StreamlinesBatchScheduler(trainset, batch_size=1000, # noisy_streamlines_sigma=None, # nb_updates_per_epoch=None, # seed=1234) # train_error = views.LossView(loss=train_loss, batch_scheduler=train_batch_scheduler) # trainer.append_task(tasks.Print("Trainset - Error : {0:.2f} | {1:.2f}", train_error.sum, train_error.mean)) # HACK: To make sure all subjects in the volume_manager are used in a batch, we have to split the trainset/validset in 2 volume managers model.volume_manager = validset_volume_manager valid_loss = loss_factory(hyperparams, model, validset) valid_batch_scheduler = batch_scheduler_factory(hyperparams, dataset=validset, train_mode=False) valid_error = views.LossView(loss=valid_loss, batch_scheduler=valid_batch_scheduler) trainer.append_task(tasks.Print("Validset - Error : {0:.2f} | {1:.2f}", valid_error.sum, valid_error.mean)) # HACK: Restore trainset volume manager model.volume_manager = trainset_volume_manager lookahead_loss = valid_error.sum direction_norm = views.MonitorVariable(T.sqrt(sum(map(lambda d: T.sqr(d).sum(), loss.gradients.values())))) # trainer.append_task(tasks.Print("||d|| : {0:.4f}", direction_norm)) # logger = tasks.Logger(train_error.mean, valid_error.mean, valid_error.sum, direction_norm) logger = tasks.Logger(valid_error.mean, valid_error.sum, direction_norm) trainer.append_task(logger) if args.view: import pylab as plt def _plot(*args, **kwargs): plt.figure(1) plt.clf() plt.show(False) plt.subplot(121) plt.plot(np.array(logger.get_variable_history(0)).flatten(), label="Train") plt.plot(np.array(logger.get_variable_history(1)).flatten(), label="Valid") plt.legend() plt.subplot(122) plt.plot(np.array(logger.get_variable_history(3)).flatten(), label="||d'||") plt.draw() trainer.append_task(tasks.Callback(_plot)) # Callback function to stop training if NaN is detected. def detect_nan(obj, status): if np.isnan(model.parameters[0].get_value().sum()): print("NaN detected! Stopping training now.") sys.exit() trainer.append_task(tasks.Callback(detect_nan, each_k_update=1)) # Callback function to save training progression. def save_training(obj, status): trainer.save(experiment_path) trainer.append_task(tasks.Callback(save_training)) # Early stopping with a callback for saving every time model improves. def save_improvement(obj, status): """ Save best model and training progression. """ if np.isnan(model.parameters[0].get_value().sum()): print("NaN detected! Not saving the model. Crashing now.") sys.exit() print("*** Best epoch: {0} ***\n".format(obj.best_epoch)) model.save(experiment_path) # Print time for one epoch trainer.append_task(tasks.PrintEpochDuration()) trainer.append_task(tasks.PrintTrainingDuration()) trainer.append_task(tasks.PrintTime(each_k_update=100)) # Profiling # Add stopping criteria trainer.append_task(stopping_criteria.MaxEpochStopping(args.max_epoch)) early_stopping = stopping_criteria.EarlyStopping(lookahead_loss, lookahead=args.lookahead, eps=args.lookahead_eps, callback=save_improvement) trainer.append_task(early_stopping) with Timer("Compiling Theano graph"): trainer.build_theano_graph() if resuming: if not os.path.isdir(pjoin(experiment_path, 'training')): print("No 'training/' folder. Assuming it failed before" " the end of the first epoch. Starting a new training.") else: with Timer("Loading"): trainer.load(experiment_path) with Timer("Training"): trainer.train()
def main(): parser = build_argparser() args = parser.parse_args() print(args) print("Using Theano v.{}".format(theano.version.short_version)) hyperparams_to_exclude = ['max_epoch', 'force', 'name', 'view', 'shuffle_streamlines'] # Use this for hyperparams added in a new version, but nonexistent from older versions retrocompatibility_defaults = {'feed_previous_direction': False, 'predict_offset': False, 'normalize': False, 'sort_streamlines': False, 'keep_step_size': False, 'use_layer_normalization': False, 'drop_prob': 0., 'use_zoneout': False, 'skip_connections': False} experiment_path, hyperparams, resuming = utils.maybe_create_experiment_folder(args, exclude=hyperparams_to_exclude, retrocompatibility_defaults=retrocompatibility_defaults) # Log the command currently running. with open(pjoin(experiment_path, 'cmd.txt'), 'a') as f: f.write(" ".join(sys.argv) + "\n") print("Resuming:" if resuming else "Creating:", experiment_path) with Timer("Loading dataset", newline=True): trainset_volume_manager = VolumeManager() validset_volume_manager = VolumeManager() trainset = datasets.load_tractography_dataset(args.train_subjects, trainset_volume_manager, name="trainset", use_sh_coeffs=args.use_sh_coeffs) validset = datasets.load_tractography_dataset(args.valid_subjects, validset_volume_manager, name="validset", use_sh_coeffs=args.use_sh_coeffs) print("Dataset sizes:", len(trainset), " |", len(validset)) batch_scheduler = batch_scheduler_factory(hyperparams, dataset=trainset, train_mode=True) print("An epoch will be composed of {} updates.".format(batch_scheduler.nb_updates_per_epoch)) print(trainset_volume_manager.data_dimension, args.hidden_sizes, batch_scheduler.target_size) with Timer("Creating model"): input_size = trainset_volume_manager.data_dimension if hyperparams['feed_previous_direction']: input_size += 3 model = model_factory(hyperparams, input_size=input_size, output_size=batch_scheduler.target_size, volume_manager=trainset_volume_manager) model.initialize(weigths_initializer_factory(args.weights_initialization, seed=args.initialization_seed)) with Timer("Building optimizer"): loss = loss_factory(hyperparams, model, trainset) if args.clip_gradient is not None: loss.append_gradient_modifier(DirectionClipping(threshold=args.clip_gradient)) optimizer = optimizer_factory(hyperparams, loss) with Timer("Building trainer"): trainer = Trainer(optimizer, batch_scheduler) # Log training error loss_monitor = views.MonitorVariable(loss.loss) avg_loss = tasks.AveragePerEpoch(loss_monitor) trainer.append_task(avg_loss) # Print average training loss. trainer.append_task(tasks.Print("Avg. training loss: : {}", avg_loss)) # if args.learn_to_stop: # l2err_monitor = views.MonitorVariable(T.mean(loss.mean_sqr_error)) # avg_l2err = tasks.AveragePerEpoch(l2err_monitor) # trainer.append_task(avg_l2err) # # crossentropy_monitor = views.MonitorVariable(T.mean(loss.cross_entropy)) # avg_crossentropy = tasks.AveragePerEpoch(crossentropy_monitor) # trainer.append_task(avg_crossentropy) # # trainer.append_task(tasks.Print("Avg. training L2 err: : {}", avg_l2err)) # trainer.append_task(tasks.Print("Avg. training stopping: : {}", avg_crossentropy)) # trainer.append_task(tasks.Print("L2 err : {0:.4f}", l2err_monitor, each_k_update=100)) # trainer.append_task(tasks.Print("stopping : {0:.4f}", crossentropy_monitor, each_k_update=100)) # Print NLL mean/stderror. # train_loss = L2DistanceForSequences(model, trainset) # train_batch_scheduler = StreamlinesBatchScheduler(trainset, batch_size=1000, # noisy_streamlines_sigma=None, # nb_updates_per_epoch=None, # seed=1234) # train_error = views.LossView(loss=train_loss, batch_scheduler=train_batch_scheduler) # trainer.append_task(tasks.Print("Trainset - Error : {0:.2f} | {1:.2f}", train_error.sum, train_error.mean)) # HACK: To make sure all subjects in the volume_manager are used in a batch, we have to split the trainset/validset in 2 volume managers model.volume_manager = validset_volume_manager model.drop_prob = 0. # Do not use dropout/zoneout for evaluation valid_loss = loss_factory(hyperparams, model, validset) valid_batch_scheduler = batch_scheduler_factory(hyperparams, dataset=validset, train_mode=False) valid_error = views.LossView(loss=valid_loss, batch_scheduler=valid_batch_scheduler) trainer.append_task(tasks.Print("Validset - Error : {0:.2f} | {1:.2f}", valid_error.sum, valid_error.mean)) if hyperparams['model'] == 'ffnn_regression': valid_batch_scheduler2 = batch_scheduler_factory(hyperparams, dataset=validset, train_mode=False) valid_l2 = loss_factory(hyperparams, model, validset, loss_type="expected_value") valid_l2_error = views.LossView(loss=valid_l2, batch_scheduler=valid_batch_scheduler2) trainer.append_task(tasks.Print("Validset - {}".format(valid_l2.__class__.__name__) + "\t: {0:.2f} | {1:.2f}", valid_l2_error.sum, valid_l2_error.mean)) # HACK: Restore trainset volume manager model.volume_manager = trainset_volume_manager model.drop_prob = hyperparams['drop_prob'] # Restore dropout lookahead_loss = valid_error.sum direction_norm = views.MonitorVariable(T.sqrt(sum(map(lambda d: T.sqr(d).sum(), loss.gradients.values())))) # trainer.append_task(tasks.Print("||d|| : {0:.4f}", direction_norm)) # logger = tasks.Logger(train_error.mean, valid_error.mean, valid_error.sum, direction_norm) logger = tasks.Logger(valid_error.mean, valid_error.sum, direction_norm) trainer.append_task(logger) if args.view: import pylab as plt def _plot(*args, **kwargs): plt.figure(1) plt.clf() plt.show(False) plt.subplot(121) plt.plot(np.array(logger.get_variable_history(0)).flatten(), label="Train") plt.plot(np.array(logger.get_variable_history(1)).flatten(), label="Valid") plt.legend() plt.subplot(122) plt.plot(np.array(logger.get_variable_history(3)).flatten(), label="||d'||") plt.draw() trainer.append_task(tasks.Callback(_plot)) # Callback function to stop training if NaN is detected. def detect_nan(obj, status): if np.isnan(model.parameters[0].get_value().sum()): print("NaN detected! Stopping training now.") sys.exit() trainer.append_task(tasks.Callback(detect_nan, each_k_update=1)) # Callback function to save training progression. def save_training(obj, status): trainer.save(experiment_path) trainer.append_task(tasks.Callback(save_training)) # Early stopping with a callback for saving every time model improves. def save_improvement(obj, status): """ Save best model and training progression. """ if np.isnan(model.parameters[0].get_value().sum()): print("NaN detected! Not saving the model. Crashing now.") sys.exit() print("*** Best epoch: {0} ***\n".format(obj.best_epoch)) model.save(experiment_path) # Print time for one epoch trainer.append_task(tasks.PrintEpochDuration()) trainer.append_task(tasks.PrintTrainingDuration()) trainer.append_task(tasks.PrintTime(each_k_update=100)) # Profiling # Add stopping criteria trainer.append_task(stopping_criteria.MaxEpochStopping(args.max_epoch)) early_stopping = stopping_criteria.EarlyStopping(lookahead_loss, lookahead=args.lookahead, eps=args.lookahead_eps, callback=save_improvement) trainer.append_task(early_stopping) with Timer("Compiling Theano graph"): trainer.build_theano_graph() if resuming: if not os.path.isdir(pjoin(experiment_path, 'training')): print("No 'training/' folder. Assuming it failed before" " the end of the first epoch. Starting a new training.") else: with Timer("Loading"): trainer.load(experiment_path) with Timer("Training"): trainer.train()
def main(): parser = build_argparser() args = parser.parse_args() print(args) print("Using Theano v.{}".format(theano.version.short_version)) hyperparams_to_exclude = ['max_epoch', 'force', 'name', 'view'] # Use this for hyperparams added in a new version, but nonexistent from older versions retrocompatibility_defaults = {'use_layer_normalization': False} experiment_path, hyperparams, resuming = utils.maybe_create_experiment_folder( args, exclude=hyperparams_to_exclude, retrocompatibility_defaults=retrocompatibility_defaults) # Log the command currently running. with open(pjoin(experiment_path, 'cmd.txt'), 'a') as f: f.write(" ".join(sys.argv) + "\n") print("Resuming:" if resuming else "Creating:", experiment_path) with Timer("Loading dataset", newline=True): trainset_volume_manager = VolumeManager() validset_volume_manager = VolumeManager() trainset = datasets.load_mask_classifier_dataset( args.train_subjects, trainset_volume_manager, name="trainset", use_sh_coeffs=args.use_sh_coeffs) validset = datasets.load_mask_classifier_dataset( args.valid_subjects, validset_volume_manager, name="validset", use_sh_coeffs=args.use_sh_coeffs) print("Dataset sizes:", len(trainset), " |", len(validset)) batch_scheduler = MaskClassifierBatchScheduler( trainset, hyperparams['batch_size'], seed=hyperparams['seed']) print("An epoch will be composed of {} updates.".format( batch_scheduler.nb_updates_per_epoch)) print(trainset_volume_manager.data_dimension, args.hidden_sizes, batch_scheduler.target_size) with Timer("Creating model"): input_size = trainset_volume_manager.data_dimension model = FFNN_Classification(trainset_volume_manager, input_size, hyperparams['hidden_sizes']) model.initialize( weigths_initializer_factory(args.weights_initialization, seed=args.initialization_seed)) with Timer("Building optimizer"): loss = BinaryCrossEntropy(model, trainset) if args.clip_gradient is not None: loss.append_gradient_modifier( DirectionClipping(threshold=args.clip_gradient)) optimizer = optimizer_factory(hyperparams, loss) with Timer("Building trainer"): trainer = Trainer(optimizer, batch_scheduler) # Log training error loss_monitor = views.MonitorVariable(loss.loss) avg_loss = tasks.AveragePerEpoch(loss_monitor) trainer.append_task(avg_loss) # Print average training loss. trainer.append_task( tasks.Print("Avg. training loss: : {}", avg_loss)) # HACK: To make sure all subjects in the volume_manager are used in a batch, we have to split the trainset/validset in 2 volume managers model.volume_manager = validset_volume_manager valid_loss = BinaryCrossEntropy(model, validset) valid_batch_scheduler = MaskClassifierBatchScheduler( validset, hyperparams['batch_size'], seed=hyperparams['seed']) valid_error = views.LossView(loss=valid_loss, batch_scheduler=valid_batch_scheduler) trainer.append_task( tasks.Print("Validset - Error : {0:.2f} | {1:.2f}", valid_error.sum, valid_error.mean)) # HACK: Restore trainset volume manager model.volume_manager = trainset_volume_manager lookahead_loss = valid_error.sum direction_norm = views.MonitorVariable( T.sqrt(sum(map(lambda d: T.sqr(d).sum(), loss.gradients.values())))) # trainer.append_task(tasks.Print("||d|| : {0:.4f}", direction_norm)) # logger = tasks.Logger(train_error.mean, valid_error.mean, valid_error.sum, direction_norm) logger = tasks.Logger(valid_error.mean, valid_error.sum, direction_norm) trainer.append_task(logger) # Callback function to stop training if NaN is detected. def detect_nan(obj, status): if np.isnan(model.parameters[0].get_value().sum()): print("NaN detected! Stopping training now.") sys.exit() trainer.append_task(tasks.Callback(detect_nan, each_k_update=1)) # Callback function to save training progression. def save_training(obj, status): trainer.save(experiment_path) trainer.append_task(tasks.Callback(save_training)) # Early stopping with a callback for saving every time model improves. def save_improvement(obj, status): """ Save best model and training progression. """ if np.isnan(model.parameters[0].get_value().sum()): print("NaN detected! Not saving the model. Crashing now.") sys.exit() print("*** Best epoch: {0} ***\n".format(obj.best_epoch)) model.save(experiment_path) # Print time for one epoch trainer.append_task(tasks.PrintEpochDuration()) trainer.append_task(tasks.PrintTrainingDuration()) trainer.append_task(tasks.PrintTime(each_k_update=100)) # Profiling # Add stopping criteria trainer.append_task(stopping_criteria.MaxEpochStopping(args.max_epoch)) early_stopping = stopping_criteria.EarlyStopping( lookahead_loss, lookahead=args.lookahead, eps=args.lookahead_eps, callback=save_improvement) trainer.append_task(early_stopping) with Timer("Compiling Theano graph"): trainer.build_theano_graph() if resuming: if not os.path.isdir(pjoin(experiment_path, 'training')): print("No 'training/' folder. Assuming it failed before" " the end of the first epoch. Starting a new training.") else: with Timer("Loading"): trainer.load(experiment_path) with Timer("Training"): trainer.train()
def test_gru_mixture_fprop_neighborhood(): hyperparams = { 'model': 'gru_mixture', 'SGD': "1e-2", 'hidden_sizes': 50, 'batch_size': 16, 'learn_to_stop': False, 'normalize': True, 'activation': 'tanh', 'feed_previous_direction': False, 'predict_offset': False, 'use_layer_normalization': False, 'drop_prob': 0., 'use_zoneout': False, 'skip_connections': False, 'seed': 1234, 'noisy_streamlines_sigma': None, 'keep_step_size': True, 'sort_streamlines': False, 'n_gaussians': 2, 'neighborhood_radius': 0.5 } with Timer("Creating dataset", newline=True): volume_manager = neurotools.VolumeManager() trainset = make_dummy_dataset(volume_manager) print("Dataset sizes:", len(trainset)) batch_scheduler = factories.batch_scheduler_factory(hyperparams, dataset=trainset) print("An epoch will be composed of {} updates.".format( batch_scheduler.nb_updates_per_epoch)) print(volume_manager.data_dimension, hyperparams['hidden_sizes'], batch_scheduler.target_size) with Timer("Creating model"): model = factories.model_factory( hyperparams, input_size=volume_manager.data_dimension, output_size=batch_scheduler.target_size, volume_manager=volume_manager) model.initialize( factories.weigths_initializer_factory("orthogonal", seed=1234)) print("Input size: {}".format(model.model_input_size)) # Test fprop with missing streamlines from one subject in a batch output = model.get_output(trainset.symb_inputs) fct = theano.function([trainset.symb_inputs], output, updates=model.graph_updates) batch_inputs, batch_targets, batch_mask = batch_scheduler._next_batch(2) out = fct(batch_inputs) with Timer("Building optimizer"): loss = factories.loss_factory(hyperparams, model, trainset) optimizer = factories.optimizer_factory(hyperparams, loss) fct_loss = theano.function( [trainset.symb_inputs, trainset.symb_targets, trainset.symb_mask], loss.loss, updates=model.graph_updates) loss_value = fct_loss(batch_inputs, batch_targets, batch_mask) print("Loss:", loss_value) fct_optim = theano.function( [trainset.symb_inputs, trainset.symb_targets, trainset.symb_mask], list(optimizer.directions.values()), updates=model.graph_updates) dirs = fct_optim(batch_inputs, batch_targets, batch_mask) return True