Example #1
0
    def model_complexity_exp_alpha1(self):
        #TODO should we create a new learner object??
        self.learner = ANNLearner(hidden_layer_sizes=(300, ))
        self.expHelper = ExperimentHelper(self.splitter, self.learner, '1')
        #param_range = np.array([(100),(200,),(300,),(400,),(500,)])
        #param_range = np.array([0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1])
        param_range = np.array([0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1])
        self.expHelper.model_complexity_exp('alpha', param_range)

        self.learner = ANNLearner(hidden_layer_sizes=(390, ))
        self.expHelper = ExperimentHelper(self.splitter, self.learner, '2')
        #param_range = np.array([(100),(200,),(300,),(400,),(500,)])
        param_range = np.array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7])
        #param_range = np.array([0.0001, 0.0005, 0.001, 0.005, 0.008])
        self.expHelper.model_complexity_exp('alpha', param_range)
Example #2
0
 def model_complexity_exp11(self):
     #TODO should we create a new learner object??
     self.learner = ANNLearner()
     self.expHelper = ExperimentHelper(self.splitter, self.learner)
     param_range = np.array([(50, ), (
         50,
         50,
     ), (
         50,
         50,
         50,
     ), (
         50,
         50,
         50,
         50,
     ), (
         50,
         50,
         50,
         50,
         50,
     )])
     #param_range = np.array([100, 200,300,400, 500])
     self.expHelper.model_complexity_exp('hidden_layer_sizes', param_range)
Example #3
0
 def model_complexity_exp_alpha2(self):
     #TODO should we create a new learner object??
     self.learner = ANNLearner()
     self.expHelper = ExperimentHelper(self.splitter, self.learner, '2')
     #param_range = np.array([(100),(200,),(300,),(400,),(500,)])
     param_range = np.array([0.0001, 0.001, 0.01, 0.1, 1, 5])
     self.expHelper.model_complexity_exp('alpha', param_range)
Example #4
0
 def experiment_run_test_bank2(self):
     self.learner = ANNLearner(activation='relu',
                               alpha=0.7,
                               hidden_layer_sizes=(390, ),
                               learning_rate='constant',
                               solver='adam',
                               early_stopping=False)
     self.expHelper = ExperimentHelper(self.splitter, self.learner)
     self.expHelper.experiment_run_test()
Example #5
0
 def learning_curve_iter21_bank(self):
     self.learner = ANNLearner(activation='relu',
                               alpha=0.01,
                               hidden_layer_sizes=(300, ),
                               learning_rate='constant',
                               solver='adam',
                               early_stopping=False)
     self.expHelper = ExperimentHelper(self.splitter, self.learner,
                                       '-iter-2')
     self.expHelper.learning_curve_exp()
Example #6
0
 def model_complexity_exp_epoch2(self):
     #TODO should we create a new learner object??
     self.learner = ANNLearner(hidden_layer_sizes=(300, ),
                               alpha=0.0001,
                               early_stopping=False)
     self.expHelper = ExperimentHelper(self.splitter, self.learner, '3')
     #param_range = np.array([(100),(200,),(300,),(400,),(500,)])
     #param_range = np.array([0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1])
     param_range = np.array([1, 10, 50, 100, 200, 500, 1000])
     self.expHelper.model_complexity_exp('max_iter', param_range)
Example #7
0
 def experiment_run_test_bank_iter2(self):
     self.learner = ANNLearner(activation='relu',
                               alpha=0.06,
                               hidden_layer_sizes=(200, 200, 200, 200, 200,
                                                   200, 200),
                               learning_rate='constant',
                               solver='adam',
                               early_stopping=True,
                               max_iter=600,
                               momentum=0.4)
     print('100, 100, 100, 100, 100, 100,50 alpha 0.3')
     self.expHelper = ExperimentHelper(self.splitter, self.learner)
     self.expHelper.experiment_run_test()
     """ self.learner = ANNLearner(
Example #8
0
 def model_complexity_exp_epoch(self):
     #TODO should we create a new learner object??
     self.learner = ANNLearner(activation='relu',
                               alpha=0.01,
                               hidden_layer_sizes=(
                                   50,
                                   50,
                                   50,
                               ),
                               learning_rate='constant',
                               solver='adam',
                               early_stopping=True)
     self.expHelper = ExperimentHelper(self.splitter, self.learner, '2')
     #param_range = np.array([(100),(200,),(300,),(400,),(500,)])
     #param_range = np.array([0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1])
     param_range = np.array([1, 10, 50, 100, 200, 500])
     self.expHelper.model_complexity_exp('max_iter', param_range)
Example #9
0
 def __init__(self, reader, helper, splitter):
     self.reader = reader
     self.helper = helper
     self.learner = ANNLearner()
     self.splitter = splitter
     self.expHelper = ExperimentHelper(self.splitter, self.learner)
Example #10
0
    def experiment_run_test_bank_iter(self):
        self.learner = ANNLearner(activation='relu',
                                  alpha=0.7,
                                  hidden_layer_sizes=(390, 100),
                                  learning_rate='constant',
                                  solver='adam',
                                  early_stopping=False)
        print('390,100')
        self.expHelper = ExperimentHelper(self.splitter, self.learner)
        self.expHelper.experiment_run_test()

        self.learner = ANNLearner(activation='relu',
                                  alpha=0.7,
                                  hidden_layer_sizes=(200, 200, 200),
                                  learning_rate='constant',
                                  solver='adam',
                                  early_stopping=False)
        print('200, 200, 200')
        self.expHelper = ExperimentHelper(self.splitter, self.learner)
        self.expHelper.experiment_run_test()

        self.learner = ANNLearner(activation='relu',
                                  alpha=0.7,
                                  hidden_layer_sizes=(400, 400, 400),
                                  learning_rate='constant',
                                  solver='adam',
                                  early_stopping=False)
        print('400, 400, 400')
        self.expHelper = ExperimentHelper(self.splitter, self.learner)
        self.expHelper.experiment_run_test()

        self.learner = ANNLearner(activation='relu',
                                  alpha=0.7,
                                  hidden_layer_sizes=(500, 500, 500),
                                  learning_rate='constant',
                                  solver='adam',
                                  early_stopping=False)
        print('500, 500, 500')
        self.expHelper = ExperimentHelper(self.splitter, self.learner)
        self.expHelper.experiment_run_test()

        self.learner = ANNLearner(activation='relu',
                                  alpha=0.7,
                                  hidden_layer_sizes=(200, 300, 400),
                                  learning_rate='constant',
                                  solver='adam',
                                  early_stopping=False)
        print('200, 300, 400')
        self.expHelper = ExperimentHelper(self.splitter, self.learner)
        self.expHelper.experiment_run_test()

        self.learner = ANNLearner(activation='relu',
                                  alpha=0.7,
                                  hidden_layer_sizes=(390, 100),
                                  learning_rate='constant',
                                  solver='adam',
                                  early_stopping=False)
        print('390,100')
        self.expHelper = ExperimentHelper(self.splitter, self.learner)
        self.expHelper.experiment_run_test()

        self.learner = ANNLearner(activation='relu',
                                  alpha=0.3,
                                  hidden_layer_sizes=(200, 200, 200),
                                  learning_rate='constant',
                                  solver='adam',
                                  early_stopping=False)
        print('200, 200, 200 alpha 0.3')
        self.expHelper = ExperimentHelper(self.splitter, self.learner)
        self.expHelper.experiment_run_test()

        self.learner = ANNLearner(activation='relu',
                                  alpha=0.3,
                                  hidden_layer_sizes=(400, 400, 400),
                                  learning_rate='constant',
                                  solver='adam',
                                  early_stopping=False)
        print('400, 400, 400  alpha 0.3')
        self.expHelper = ExperimentHelper(self.splitter, self.learner)
        self.expHelper.experiment_run_test()

        self.learner = ANNLearner(activation='relu',
                                  alpha=0.3,
                                  hidden_layer_sizes=(500, 500, 500),
                                  learning_rate='constant',
                                  solver='adam',
                                  early_stopping=False)
        print('500, 500, 500  alpha 0.3')
        self.expHelper = ExperimentHelper(self.splitter, self.learner)
        self.expHelper.experiment_run_test()

        self.learner = ANNLearner(activation='relu',
                                  alpha=0.3,
                                  hidden_layer_sizes=(200, 300, 400),
                                  learning_rate='constant',
                                  solver='adam',
                                  early_stopping=False)
        print('200, 300, 400  alpha 0.3')
        self.expHelper = ExperimentHelper(self.splitter, self.learner)
        self.expHelper.experiment_run_test()

        self.learner = ANNLearner(activation='relu',
                                  alpha=0.3,
                                  hidden_layer_sizes=(
                                      100,
                                      100,
                                      100,
                                      100,
                                  ),
                                  learning_rate='constant',
                                  solver='adam',
                                  early_stopping=False)
        print('100, 100, 100, 100,  alpha 0.3')
        self.expHelper = ExperimentHelper(self.splitter, self.learner)
        self.expHelper.experiment_run_test()

        self.learner = ANNLearner(activation='relu',
                                  alpha=0.3,
                                  hidden_layer_sizes=(100, 100, 100, 100, 100),
                                  learning_rate='constant',
                                  solver='adam',
                                  early_stopping=False)
        print('100, 100, 100, 100, 100, alpha 0.3')
        self.expHelper = ExperimentHelper(self.splitter, self.learner)
        self.expHelper.experiment_run_test()

        self.learner = ANNLearner(activation='relu',
                                  alpha=0.3,
                                  hidden_layer_sizes=(100, 100, 100, 100, 100,
                                                      50),
                                  learning_rate='constant',
                                  solver='adam',
                                  early_stopping=False)
        print('100, 100, 100, 100, 100, 50, alpha 0.3')
        self.expHelper = ExperimentHelper(self.splitter, self.learner)
        self.expHelper.experiment_run_test()

        self.learner = ANNLearner(activation='relu',
                                  alpha=0.3,
                                  hidden_layer_sizes=(50, 50, 50, 50, 50, 50),
                                  learning_rate='constant',
                                  solver='adam',
                                  early_stopping=False)
        print('50, 50, 50, 50, 50, 50, alpha 0.3')
        self.expHelper = ExperimentHelper(self.splitter, self.learner)
        self.expHelper.experiment_run_test()